100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Methods in Neuroscience $6.18   Add to cart

Summary

Summary Methods in Neuroscience

1 review
 18 views  1 purchase
  • Course
  • Institution
  • Book

This summary includes the information from the lectures and the chapters in the book corresponding to the lectures. With this summary you will gain all the knowledge you will need to pass your exam! It includes information in text and has supporting figures. Everything is explained in an understa...

[Show more]
Last document update: 1 year ago

Preview 4 out of 45  pages

  • No
  • 2, 4,5,6,7
  • January 3, 2023
  • January 3, 2023
  • 45
  • 2022/2023
  • Summary

1  review

review-writer-avatar

By: LaureSchippers • 1 year ago

avatar-seller
Methods in neuroscience -Stephany

Content
1. introduction to electrophysiology ...................................................................................................2
Intracellular recording.....................................................................................................................3
Patch clamp recording ....................................................................................................................4
EEG .................................................................................................................................................5
Spikes .............................................................................................................................................7
2. Anatomy and connectomics ............................................................................................................8
Tracers ............................................................................................................................................9
Supragranular Labeled Neurons .................................................................................................... 11
Brain function theories.................................................................................................................. 12
Electron Microscopy ..................................................................................................................... 13
3. Imaging ......................................................................................................................................... 14
Two-photon microscopy ............................................................................................................... 15
Electron microscopy (EM) ............................................................................................................. 15
Structural imaging ......................................................................................................................... 17
Functional imaging ........................................................................................................................ 18
Two photon imaging in visual neuroscience .................................................................................. 20
4. Optogenetics l ............................................................................................................................... 21
5. Optogenetics ll .............................................................................................................................. 27
6. Behavioural experiments ............................................................................................................... 33
Open field (locomotion) test .......................................................................................................... 35
Morris water maze ........................................................................................................................ 36
Footprint pattern assay ................................................................................................................. 36
Conventional approach to behavioural testing: home cage testing ................................................. 36
Behaviour recognition ................................................................................................................... 37
7. Genetics for neuroscience ............................................................................................................. 38
Gene delivery methods.................................................................................................................. 38
Viral methods ............................................................................................................................ 39
Transgenic strategies ..................................................................................................................... 40
Gene knock-outs ........................................................................................................................... 43

,1. introduction to electrophysiology
• Extracellular: electrode is placed in the extracellular fluid in the proximity of the neuron.
Advantage: Link neural activity and behaviour.
Disadvantage: You don’t know specifically from which neuron the spikes comes from.

• Intracellular: electrode is inserted into the neuron.
Advantage: Specifically from one neuron.
Disadvantage: Damage of the membrane.

• Patch clamp: electrode makes a seal with a membrane patch.
Advantage: Specific from neuron-neuron interactions
Disadvantage: technically difficult.

Properties neurons:
• Depolarization: shift of the membrane potential from rest (-70mV inside the cell) towards less
negative values
• Hyperpolarization: shift of the membrane potential towards more negative values.
• Synaptic potentials: excitatory (depolarizing; EPSP) and inhibitory (hyperpolarizing; IPSP) post
synaptic potentials.
• Spikes: a regenerative process causing a membrane potential short pulse and initiating synaptic
transmission processes.




Configurations for electrophysiology
• in vitro: a slice or isolated brain portion is kept alive in a dish, typically under a microscopy setup.
• Acute in vivo: animal is anesthetized or immobilized under a microscope/micromanipulator.
• Chronic/freely moving in vivo: animal is implanted with a miniaturized micro-drive which contains
electrodes.

Components of electrophysiology
• Microelectrode: the transducer between biophysical currents (ionic) and currents in an electronic
circuit.
• Headstage: mechanical placement of electrodes (micromanipulator, microdrive) and first
amplification stage.
• Cables: must be shielded to protect from noise!
• Amplifier: low-noise, 100x-2000x gain.
• Digitization: translate analog signals into digital data.
• Visualization/storage: Computer, oscilloscope.

Microelectrodes
• Glass pipettes: mostly for intracellular/patch clamp
• Metal wires: insulated, thin, good plates wires, sharp or blunt tip.
• Silicon probes: C-MOS micro fabricated.

,Noise insulation
• electrical signals are tiny (microvolts, nano, pico amps).
• Electrical noise (50 Hz line noise) may swamp actual signals.
• Other electrical noise: cable movement artifact, electromyographic.
• differential recording: signal from a nearby electrode in a “neutral” brain location is subtracted.
• Cable shielding, Faraday cages.
• Active headstage, first amplifier stage on animal’s head, to increase signal before passing through
cables.

Digitization
• Sampling rate (must be at least twice the maximum frequency that we want to record) typically 20
30 kHz.
• Analog depth: the number of bits used to encode the signal: e.g. 16 bits: can output 2^16=65536
different values.
• A/D range: the difference between the lowest and highest voltage that can be sampled (saturation
outside of this range).

Integrated chips have been developed that do amplifying, digitizing, multiplexing on the animals
head
• Cut cost and complexity of (multi-channel) ephys systems.




Intracellular recording
• Voltage-Clamp: a feedback circuit is used to inject current in the neuron to keep the voltage
constant at a desired level.
• Neural dynamics can be analysed by measuring the current flowing through the electrode.
• I/V curve.

, Patch clamp recording

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller StephSilentium. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $6.18. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

83637 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$6.18  1x  sold
  • (1)
  Add to cart