Samenvatting 'Maths in Motion' , Wiskunde voor Bewegingswetenschappen
32 views 3 purchases
Course
Wiskunde voor Bewegingswetenschappen (BWB123)
Institution
Rijksuniversiteit Groningen (RuG)
Een uitgebreide samenvatting met voorbeelden van het boek Maths in Motion van Theo de Haan, 3e editie. Alle hoofdstukken met voorbeelden uitgelegd. Aan het einde van elk hoofdstuk handige opgaves uit boek, zodat je niet alles hoeft te maken, maar wel alles snapt.
,1 Differentiation
1.1 Basic Rules
Differentieren wordt gebruikt om de helling van een functie te bepalen
Differentieren regels:
Sum Rule: f (x) = p(x) ± g(x) → f ′ (x) = p′ (x) ± g ′ (x)
Product rule: f (x) = p(x) ∗ g(x) → f ′ (x) = p′ (x) ∗ g(x) + p(x) ∗ g ′ (x)
p(x) ′ ′ (x)
Quotient Rule: f (x) = g(x) → f ′ (x) = p (x)∗g(x)−p(x)∗g
(g(x))2
For example:
f (x) = 6x + x2 → f ′ (x) = 6 + 2x
f (x) = ex ∗ x2 → f ′ (x) = ex ∗ x2 + ex ∗ 2x
2
f (x) = 2x+1
x2 −1
→ f ′ (x) = 2∗(x −1)−2x(2x+1)
(x2 −1)2
= 2x2 −2−4x2 −2x
(x2 −1)2
= −2x2 −2x−2
(x2 −1)2
Standaard dingen om te weten:
f (x) = xn → f ′ (x) = nxn−1
f (x) = ex → f ′ (x) = ex
f (x) = loga x → f ′ (x) = x ln
1
a
f (x) = ln(x) → f ′ (x) = x1
f (x) = sin x → f ′ (x) = cos x
f (x) = cos x → f ′ (x) = − sin x
f (x) = tan x → f ′ (x) = cos12 x
1.2 Kettingregel
Stel je hebt k(x) = cos(2x), dan heb je de functie f (x) = 2x zitten in de cosinus. Dan kan je
niet meer de standaard afgeleide pakken van de cosinus. Dus moet je de kettingregel gebruiken.
Kettingregel:
k(x) = g(f (x)) → k ′ (x) = g ′ (f (x)) ∗ f ′ (x)
Dit is misschien een beetje een vage definitie, maar het wordt duidelijker met het voorbeeld:
k(x) = cos(2x)
Je ziet de 2 functies: cosinus en 2x. Even beide een naam geven:
g = cos(u) ; u = 2x
Eigenlijk heb je k(x) nu alleen anders geschreven, kijk maar: k(x) = g(u) = cos(u) = cos(2x)
En nu de afgeleide pakken van beide functies
4
, g ′ = −sin(u) ; u′ = 2
De afgeleide van k is dan volgens de kettingregel: k ′ (x) = g ′ ∗ u′ = −sin(u) ∗ 2 Er staat nu
sin(u), maar we weten wat u is, dus uiteindelijk krijg je:
k ′ (x) = −sin(2x) ∗ 2 = −2sin(2x)
Ander voorbeeld: p
k(x) = 3x2 + 2x − 1
√ 1 1
g = u = u 2 → g ′ = 12 u− 2
u = 3x2 + 2x − 1 → u′ = 6x + 2
1 1
Dus k ′ (x) = g ′ ∗ u′ = 12 u− 2 ∗ (6x + 2) = 12 (3x2 + 2x − 1)− 2 ∗ (6x + 2) = √ 6x+2
2 3x2 +2x−1
Je boek noteert het iets anders (Zie pagina 46), maar ik vind persoonlijk mijn manier sneller
en duidelijker. Maar je moet doen, wat jij het makkelijkst vindt
The second derivative, is niets meer dan de tweede afgeleide, dus de afgeleide functie nog een
keer afleiden. Voor de rest niets speciaals.
1.3 Partial Differentiation
Partial differentiation wordt gebruik, wanneer je functie depends on meer dan 1 variabele. Tot
nu depende de functie f alleen op de variabele x. Neem bijvoorbeeld z = f (x, y) dan heb je een
drie dimensionale grafiek, als je hem zou plotten. Zie figuur hieronder
Dan kan je de afgeleide in 2 richtingen bepalen. In de x-richting (linker plaatje) of in de y-
richting (rechter plaatje). Je ziet, dat als je de afgeleide in de x-richting bepaalt, dat y constant
5
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller hjkolkvander. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $6.35. You're not tied to anything after your purchase.