100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Empirical Finance, P1 MSc Finance $8.72   Add to cart

Summary

Summary Empirical Finance, P1 MSc Finance

2 reviews
 79 views  12 purchases
  • Course
  • Institution

Summary for the course Empirical Finance, given in period 1 of the Master of Finance at the VU. This summary greatly covers all theoretical subjects which are taught in this course .

Preview 4 out of 63  pages

  • January 15, 2023
  • 63
  • 2022/2023
  • Summary

2  reviews

review-writer-avatar

By: mauk99 • 3 weeks ago

review-writer-avatar

By: maxvermeulen • 11 months ago

avatar-seller
Empirical Finance Summary
MSc Finance ’22 – ’23, period 1


Contents


Part I – Linear regression ....................................................................................................................4
1.1 Explanation of linear models and transformation ......................................................................4
1.2 Dummies...................................................................................................................................5
1.3 Model adequacy and outliers (𝑅2, 𝑅2, 𝐴𝐼𝐶 & 𝐵𝐼𝐶) ....................................................................6
1.4 OLS framework..........................................................................................................................7
1.5 t-test & F-test ............................................................................................................................8
Part II – Logit ....................................................................................................................................10
2.1 Limited dependent variable models ........................................................................................ 10
2.2 Logit/Probit models and their estimation through maximum likelihood .................................. 10
2.3 Parameter interpretation and marginal effects ........................................................................ 10
2.4 Model adequacy: R2 and ROC/CAP curve ................................................................................. 11
2.5 Other Logit/Probit models ...................................................................................................... 13
Part III – Panel data ..........................................................................................................................14
3.1 Motivation for panel data........................................................................................................ 14
3.2 Pooled regression.................................................................................................................... 14
3.3 Fixed effects models................................................................................................................ 15
3.4 Within and between estimator ................................................................................................ 16
3.5 Random effects models ........................................................................................................... 16
3.6 Take fixed effects or random effects? ...................................................................................... 16
3.7 Clustered standard errors ........................................................................................................ 17
Part IV – Endogeneity and Diff-in-Diff ..............................................................................................18

, 4.1 Endogeneity explanation ......................................................................................................... 18
4.2 Source 1: Measurement error ................................................................................................. 18
4.3 Source 2: Omitted variable bias ............................................................................................... 19
4.4 Solution 1: Instrumental Variables (IV) .................................................................................... 20
4.5 Solution 2: Diff-in-Diff approach .............................................................................................. 20
Part V – Misspecification ..................................................................................................................22
5.1 Assumption 0a; correction specification .................................................................................. 22
5.2 Assumption 0b; no perfect multicollinearity ............................................................................ 23
5.3 Assumption 1; zero mean errors.............................................................................................. 24
5.4 Assumption 4’; non-random regressors ................................................................................... 24
5.5 Assumption 4; no covariance between errors and regressors .................................................. 24
5.6 Assumption 5; normality ......................................................................................................... 24
5.7 Assumption 2; homoskedasticity ............................................................................................. 25
5.8 Assumption 3; No cross-correlation ......................................................................................... 26
Part VI – Event studies .....................................................................................................................27
6.1 Motivation and overview ........................................................................................................ 27
6.2 Event study methodology ........................................................................................................ 27
6.3 Cross-sectional regressions ..................................................................................................... 29
6.4 Extensions and some important aspects .................................................................................. 29
Part VII – Univariate linear time series models ................................................................................31
7.1 Specification of AR, MA & ARMA models ................................................................................. 31
7.2 (Partial) Autocorrelations ........................................................................................................ 32
7.3 Diagnostics checking ............................................................................................................... 37
7.4 Forecasting with univariate time series models ....................................................................... 39
7.5 Forecasting an AR(1) model  Empty sheet to write on .......................................................... 40
7.6 Forecasting an ARMA(2,1) model  Empty sheet to write on ................................................. 41
7.7 Evaluation of forecasts ............................................................................................................ 42
Part VIII – Unit roots.........................................................................................................................44
8.1 Motivation .............................................................................................................................. 44
8.2 Non-stationarity and unit roots ............................................................................................... 44
8.3 Testing for unit roots ............................................................................................................... 48
Part IX – Univariate volatility models ...............................................................................................51
9.1 Motivation and overview ........................................................................................................ 51
9.2 Different types of volatility ...................................................................................................... 51
9.3 ARCH and GARCH models, their varieties and motivation ........................................................ 52
9.4 Estimation and diagnostics ...................................................................................................... 56

2
Empirical Finance summary

, 9.5 Forecasting and evaluation...................................................................................................... 58
Part X – Extra: Overview tables ........................................................................................................61
10.1 OLS Assumptions ................................................................................................................... 61
10.2 Linear probability model overview ........................................................................................ 62
10.3 Various models overview ...................................................................................................... 62




3
Empirical Finance summary

, Part I – Linear regression


1.1 Explanation of linear models and transformation

Most simple model to explain a relationship between certain factors:
𝑌𝑖 = 𝛽0 + 𝛽1 𝑋𝑖 + 𝛽2 𝑋𝑖 + 𝜖𝑖
This is also called the ‘’Classical Linear Regression Model’’ (CLRM), and it consist of
the following main components:
 Dependent variable  Is observed and random
 Parameters  Are fixed & non-random, however they are not known,
therefore we estimate them.
 Regressors  Are observed and could be random or non-random
 Error term  Is unobserved and random
Anything that depends on data will be (a) random (variable) and will have
distributional properties.
This linear relationship can also be described through vector notation:
First standard notation: 𝑦𝑖 = 𝑥𝑖′ 𝛽 + 𝜖𝑖
where the beta’s and regressors are stored in column vectors:

𝛽0 1
𝛽 = (𝛽1 ) , 𝑥𝑖 = (𝑋…1 ) Note that the Xi vector needs to be transposed in order to
….
βi 𝑋𝑖

make matrix multiplication possible.
The second standard notation stacks all the observations i = 1, …., 3010:
𝑦 = 𝑋𝛽 + 𝜖




A linear regression can be done when the model is linear in the parameters, e.g.:
𝑊𝑎𝑔𝑒𝑖 = 𝛽0 + 𝛽1 𝐸𝑑𝑢𝑐𝑖 + 𝜖𝑖



4
Empirical Finance summary

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller meinzenierop29. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $8.72. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75759 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$8.72  12x  sold
  • (2)
  Add to cart