Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Examen

Summer MGT 6203 MID EXAM PART2 – CODING (QUESTIONS AND ANSWERS)

Note
-
Vendu
-
Pages
16
Grade
A+
Publié le
23-01-2023
Écrit en
2022/2023

Summer MGT 6203 MID EXAM PART2 – CODING Week 1 Use the inbuilt dataset ‘longley’ for questions 1 and 2. Q1) Fit a linear regression model with ‘Employed’ as the response variable and all other variables (except ‘Year’) as predictors. What are the significant predictors at 10% significance level? A. GNP B. GNP, Armed.Forces C. GNP, Unemployed, Population D. None of the predictors are significant at 10% significance level Solution: model1 = lm(Employed~.-Year, data = longley) summary(model1) ## ## Call: ## lm(formula = Employed ~ . - Year, data = longley) ## ## Residuals: ## Min 1Q Median 3Q Max ## -0.55324 -0.36478 0.06106 0.20550 0.93359 ## ## Coefficients: ## Estimate Std. Error t value Pr(>|t|) ## (Intercept) 92. 35. 2.629 0.0252 * ## GNP.deflator -0. 0. -0.366 0.7217 ## GNP 0. 0. 2.269 0.0467 * ## Unemployed -0. 0. -0.921 0.3788 ## Armed.Forces -0. 0. -1.975 0.0765 . ## Population -0. 0. -1.222 0.2498 ## --- ## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 ## ## Residual standard error: 0.4832 on 10 degrees of freedom ## Multiple R-squared: 0.9874, Adjusted R-squared: 0.9811 ## F-statistic: 156.4 on 5 and 10 DF, p-value: 3.699e-09 From the p-value, we can see that GNP and Armed.Forces are significant at 10% significance level. Q2) What can you say about multicollinearity in this model? a. The model does not exhibit multicollinearity b. The model exhibits multicollinearity due to high correlation between GNP, Armed.Forces c. The model exhibits multicollinearity due to high correlation between GNP, GNP.deflator and population d. The model exhibits multicollinearity due to high correlation between GNP.deflator, Unemployed Solution: vif(model1) ## GNP.deflator GNP Unemployed Armed.Forces Population ## 130. 639. 10. 2. 339. Yes, looking at the VIF table, we can see that GNP, GNP deflator and population have high VIF values indicating multicollinearity issue. We may also look at the correlation matrix to come to the same conclusion. cor(longley[,-6]) ## GNP.deflator GNP Unemployed Armed.Forces Population ## GNP.deflator 1. 0. 0. 0. 0. ## GNP 0. 1. 0. 0. 0. ## Unemployed 0. 0. 1. -0. 0. ## Armed.Forces 0. 0. -0. 1. 0. ## Population 0. 0. 0. 0. 1. ## Employed 0. 0. 0. 0. 0. ## Employed ## GNP.deflator 0. ## GNP 0. ## Unemployed 0. ## Armed.Forces 0. ## Population 0. ## Employed 1. We can see that GNP, GNP deflator and population are highly correlated causing multicollinearity issue. Week 2 Q3) The trees dataset contains the girth (diameter), height, and volume for black cherry trees. Download the dataset in R using the command “data(trees)”. Create two Linear-Linear models. The first model should use girth to predict volume, and the second model should use height to predict volume. What is the Adjusted R-Squared for each model. A. 0.9471, 0.4334 B. 0.8243, 0.3265 C. 0.9331, 0.3358 D. 0.9798, 0.3292 Solution: Q4) Using girth as the independent variable and volume as the dependent variable, which of the following models has the W

Montrer plus Lire moins
Établissement
Cours










Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours

Infos sur le Document

Publié le
23 janvier 2023
Nombre de pages
16
Écrit en
2022/2023
Type
Examen
Contient
Questions et réponses

Sujets

Aperçu du contenu

Summer MGT 6203 MID EXAM
PART2 – CODING
Week 1
Use the inbuilt dataset ‘longley’ for questions 1 and 2.
Q1) Fit a linear regression model with ‘Employed’ as the response
variable and all other variables (except ‘Year’) as predictors. What are the
significant predictors at 10% significance level?

A. GNP
B. GNP, Armed.Forces
C. GNP, Unemployed, Population
D. None of the predictors are significant at 10% significance level

Solution:
model1 = lm(Employed~.-Year, data = longley)
summary(model1)
##
## Call:
## lm(formula = Employed ~ . - Year, data = longley)
##
## Residuals:
## Min 1Q Median 3Q Max
## -0.55324 -0.36478 0.06106 0.20550 0.93359
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 92.461308 35.169248 2.629 0.0252 *
## GNP.deflator -0.048463 0.132248 -0.366 0.7217
## GNP 0.072004 0.031734 2.269 0.0467 *
## Unemployed -0.004039 0.004385 -0.921 0.3788
## Armed.Forces -0.005605 0.002838 -1.975 0.0765 .
## Population -0.403509 0.330264 -1.222 0.2498
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 0.4832 on 10 degrees of freedom
## Multiple R-squared: 0.9874, Adjusted R-squared: 0.9811
## F-statistic: 156.4 on 5 and 10 DF, p-value: 3.699e-09

From the p-value, we can see that GNP and Armed.Forces are significant at 10%
significance level.

Q2) What can you say about multicollinearity in this model?
a. The model does not exhibit multicollinearity
b. The model exhibits multicollinearity due to high correlation between GNP,
Armed.Forces

, c. The model exhibits multicollinearity due to high correlation between GNP,
GNP.deflator and population
d. The model exhibits multicollinearity due to high correlation between GNP.deflator,
Unemployed

Solution:
vif(model1)
## GNP.deflator GNP Unemployed Armed.Forces Population
## 130.829201 639.049777 10.786858 2.505775 339.011693

Yes, looking at the VIF table, we can see that GNP, GNP deflator and population have high
VIF values indicating multicollinearity issue. We may also look at the correlation matrix
to come to the same conclusion.

cor(longley[,-6])
## GNP.deflator GNP Unemployed Armed.Forces
Population
## GNP.deflator 1.0000000 0.9915892 0.6206334 0.4647442
0.9791634
## GNP 0.9915892 1.0000000 0.6042609 0.4464368
0.9910901
## Unemployed 0.6206334 0.6042609 1.0000000 -0.1774206
0.6865515
## Armed.Forces 0.4647442 0.4464368 -0.1774206 1.0000000
0.3644163
## Population 0.9791634 0.9910901 0.6865515 0.3644163
1.0000000
## Employed 0.9708985 0.9835516 0.5024981 0.4573074
0.9603906
## Employed
## GNP.deflator 0.9708985
## GNP 0.9835516
## Unemployed 0.5024981
## Armed.Forces 0.4573074
## Population 0.9603906
## Employed 1.0000000

We can see that GNP, GNP deflator and population are highly correlated causing
multicollinearity issue.

Week 2
Q3) The trees dataset contains the girth (diameter), height, and volume for black cherry trees.
Download the dataset in R using the command “data(trees)”. Create two Linear-Linear
models. The first model should use girth to predict volume, and the second model should use
height to predict volume. What is the Adjusted R-Squared for each model.

A. 0.9471, 0.4334
B. 0.8243, 0.3265
C. 0.9331, 0.3358
D. 0.9798, 0.3292

,
$11.99
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien


Document également disponible en groupe

Faites connaissance avec le vendeur

Seller avatar
Les scores de réputation sont basés sur le nombre de documents qu'un vendeur a vendus contre paiement ainsi que sur les avis qu'il a reçu pour ces documents. Il y a trois niveaux: Bronze, Argent et Or. Plus la réputation est bonne, plus vous pouvez faire confiance sur la qualité du travail des vendeurs.
ExamsConnoisseur Self
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
567
Membre depuis
3 année
Nombre de followers
343
Documents
1497
Dernière vente
13 heures de cela

4.3

67 revues

5
40
4
11
3
12
2
1
1
3

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions