100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Volledige Samenvatting Advanced Statistics (AY), UvA Nederlands $7.54
Add to cart

Summary

Volledige Samenvatting Advanced Statistics (AY), UvA Nederlands

1 review
 2 purchases
  • Course
  • Institution
  • Book

Een uitgebreide samenvatting van het vak Advanced Statistics (in het Nederlands) met vooraan een inhoudsopgave om het overzicht te bewaren. Alle gegeven hoofdstukken zijn samengevat en zo ook alle colleges, tutorial video's en writing tutorials.

Preview 5 out of 106  pages

  • No
  • Hoofdstuk 1 t/m 8
  • January 27, 2023
  • 106
  • 2022/2023
  • Summary

1  review

review-writer-avatar

By: Emmazantv • 2 year ago

Translated by Google

Really great as always

avatar-seller
Samenvatting
Advanced statistics

Nederlands




Als deze samenvatting je heeft geholpen,
zouden we een review enorm waarderen <3

,Index
Statistical Methods for the Social Sciences – Agresti ............................................................... 4
Hoofdstuk 9 – Lineaire regressie en correlatie ............................................................................ 4
Hoofdstuk 10 – Inleiding tot multivariate relaties ....................................................................... 14
Hoofdstuk 11 – Meervoudige regressie en correlatie ................................................................ 20
Hoofdstuk 13 – Meervoudige regressie met kwantitatieve en categorische voorspellers ........ 29
Multiple regression – Allison ...................................................................................................... 31
Hoofdstuk 1 – Wat is meervoudige regressie? .......................................................................... 31
Hoofdstuk 2 – Hoe interpreteer ik meerdere regressieresultaten?............................................ 35
Hoofdstuk 3 – wat kan er misgaan met meervoudige regressie? ............................................. 41
Hoofdstuk 4 – Hoe voer ik een meervoudige regressie uit?...................................................... 45
Hoofdstuk 5 – Hoe werkt bivariate regressie? ........................................................................... 48
Hoofdstuk 6 – Wat zijn de aannames van meervoudige regressie? ......................................... 51
Hoofdstuk 7 – Wat kan er gedaan worden aan multicollineariteit? ........................................... 55
Hoofdstuk 8 – Hoe kan meervoudige regressie omgaan met niet-lineaire relaties?................. 58
Hoorcolleges ................................................................................................................................ 64
Hoorcollege 1 ............................................................................................................................. 64
Hoorcollege 2 ............................................................................................................................. 69
Hoorcollege 3 ............................................................................................................................. 73
Hoorcollege 4 ............................................................................................................................. 77
Hoorcollege 5 ............................................................................................................................. 83
Hoorcollege 6 ............................................................................................................................. 90
Tutorial videos.............................................................................................................................. 95
1 – Data reiniging, uitvoeren van een scatterplot &het uitvoeren van een correlatie analyse .. 95
2 – Hoe een bivariate regressie in SPSS uit te voeren? ........................................................... 95
3 – Hoe voer je een meervoudige regressie uit in SPSS? ........................................................ 96
4 – Hoe een meervoudige regressie uit te voeren in SPSS: bemiddeling ................................ 96
6 – Hoe dummy-variabelen te maken in SPSS ......................................................................... 97
7 – Hoe dummy-variabelen in SPSS te gebruiken .................................................................... 98
8 – Hoe dummy-variabelen in SPSS te gebruiken terwijl u een andere variabele controleert . 98
9 – Hoe maak je een interactieterm met twee dummy/dichotome variabelen .......................... 99
11 – Hoe maak je een interactieterm met één dummy en één intervalvariabele ...................... 99
12 – Hoe een interactieterm uit te voeren / interpreteren met één dummy en één intervalvariabele
.................................................................................................................................................. 100
13 – Interactieterm met twee intervalvariabelen te maken, uit te voeren en te interpreteren . 101




2

,Writing tutorials.......................................................................................................................... 102
1 – Structuur van een empirisch onderzoeksrapport ............................................................... 102
2 – Construct versus operationeel niveau ............................................................................... 102
3 – APA-richtlijnen voor onderzoeksprojecten ......................................................................... 103
4 – Inleiding .............................................................................................................................. 105
5 – Werkwijze ........................................................................................................................... 105
6 – resultaten............................................................................................................................ 106




3

,Statistical Methods for the Social
Sciences – Agresti
Hoofdstuk 9 – Lineaire regressie en correlatie
Lineaire relaties
Voor categorische variabelen hebben we dit gedaan door de voorwaardelijke verdelingen van y in
de verschillende categorieën van x te vergelijken, in een contingentietabel. Voor kwantitatieve
variabelen beschrijft een wiskundige formule hoe de voorwaardelijke verdeling van y (zoals y =
misdaadcijfer) varieert afhankelijk van de waarde van x.

Lineaire functies: interpretatie van het y-afsnijpunt en de helling
De formule y = α + βx drukt waarnemingen aan y uit als een lineaire functie van waarnemingen
aan x. De formule heeft een rechtlijnige grafiek met richtingscoëfficiënt β (bèta) en y-cut-off punt α
(alfa).
Elk reëel getal x, wanneer ingevoerd in de formule y = α + βx, retourneert een afzonderlijke waarde
voor y.

Bij x = 0 wordt de vergelijking y = α + βx vereenvoudigd tot y = α + βx = α + β(0) = α.
Dus de constante α in deze vergelijking is de waarde van y wanneer x = 0.
α wordt het y-cut-off punt genoemd.
De helling β is gelijk aan de verandering in y voor een toename van x met één eenheid.

In het kader van een regressieanalyse worden α en β regressiecoëfficiënten genoemd.

Modellen zijn eenvoudige benaderingen van de werkelijkheid
Een model is een eenvoudige benadering van de relatie tussen variabelen in de populatie. De
lineaire functie biedt een eenvoudig model voor de relatie tussen twee kwantitatieve variabelen.
Voor een gegeven waarde of x voorspelt het model y = α + βx een waarde voor y.

Associatie impliceert geen oorzakelijk verband.

Een verstandig model is eigenlijk iets complexer dan het model dat we tot nu toe hebben
gepresenteerd, door variabiliteit in y-waarden toe te staan bij elke waarde voor x. Dat model, niet
zomaar een rechte lijn, is wat we bedoelen met een regressiemodel.

Minst kwadraat voorspellingsvergelijking
Een scatterplot geeft de gegevens weer
De eerste stap van modelaanpassing is om de gegevens te plotten, om te zien of een model met
een rechtlijnige trend zinvol is.
Een plot van de n waarnemingen als n punten wordt een scatterplot genoemd.

Voorspellingsvergelijking
Wanneer de scatterplot suggereert dat het model y = α +βx geschikt zou kunnen zijn, gebruiken
we de gegevens om deze lijn te schatten. De notatie vertegenwoordigt een steekproefvergelijking
die het lineaire model schat.
𝑦̂ = 𝑎 + 𝑏𝑥




4

, De steekproefvergelijking 𝑦̂ = a + bx wordt de voorspellingsvergelijking genoemd omdat deze
een voorspelling biedt 𝑦̂ voor de responsvariabele bij elke waarde van x.
De formules voor a en b in de voorspellingsvergelijking 𝑦̂ = 𝑎 + 𝑏𝑥 zijn

∑(𝑥−𝑥̅ )(𝑦−𝑦̅)
𝑏= ∑(𝑥−𝑥̅ )2
en 𝑎 = 𝑦̅ − 𝑏𝑥̅

Als een waarneming zowel x- als y-waarden boven het gemiddelde heeft, of als zowel x- als y-
waarden onder hun gemiddelde liggen, dan (𝑥 − 𝑥̅ )(𝑦 − 𝑦̅) positief. De directionele schatting b is
meestal positief wanneer de meeste waarnemingen zo zijn, d.w.z. wanneer punten met grote x-
waarden ook grote y-waarden hebben en punten met kleine x-waarden also kleine x-waarden
hebben
hebben y waarden.

Effect van uitschieters op de voorspellingsvergelijking
Regressie-uitschieter: dit staat vrij ver af van de trend die de rest van de gegevens volgt. Deze
bevinding lijkt een significant effect te hebben. De lijn lijkt er naartoe getrokken en weg van het
centrum van de algemene trend van punten.

Een waarneming wordt invloedrijk genoemd als verwijdering ervan leidt tot een grote
verandering in de voorspellingsvergelijking. Tenzij de steekproefomvang groot is, kan een
waarneming een sterke invloed hebben op de helling als de x-waarde laag of hoog is in vergelijking
met de rest van de gegevens en als het een regressie-uitschieter is.

Voorspellingsfouten worden residuen genoemd
De voorspellingsfout is het verschil tussen de werkelijke y-waarde en de voorspelde waarde.

De voorspellingsfouten worden residuen genoemd . Voor een waarneming wordt het verschil
tussen een waargenomen waarde en de voorspelde waarde van de responsvariabele, y - , 𝑦̂het
residu genoemd.

Een positief residu treedt op wanneer de waargenomen waarde y groter is dan de voorspelde
waarde 𝑦̂, d.w.z. y-𝑦̂ > 0. Een negatief residu treedt op wanneer de waarde lager is dan de
voorspelde waarde. Hoe kleiner de absolute waarde van het residu, hoe beter de voorspelling,
omdat de voorspelde waarde dichter bij de waargenomen waarde ligt. In een scatterplot is het
residu voor een observatie de verticale afstand tussen het punt en de voorspellingslijn.

Voorspellingsvergelijking heeft de eigenschap kleinste kwadraten
We vatten de grootte van de residuen samen met de som van hun kwadraatwaarden. Deze
hoeveelheid, aangeduid met SSE, is
𝑆𝑆𝐸 = ∑(𝑦 − 𝑦̅)2

Het residu wordt berekend voor elke waarneming in het monster, elk residu wordt in het kwadraat
gebracht en vervolgens is SSE de som van deze kwadraten. Het symbool SSE is een afkorting
voor som van kwadraatfouten. Deze terminologie verwijst naar het residu als een maat voor de
voorspellingsfout bij het gebruik 𝑦̂ van om y om te voorspellen. Hoe beter de
voorspellingsvergelijking, hoe kleiner de residuen meestal zijn en dus hoe kleiner de SSE. Elke
specifieke vergelijking heeft overeenkomstige residuen en een waarde van SSE.

De kleinste kwadraten schattingen We vatten de grootte van de residuen samen met de som
van hun kwadraatwaarden. Deze hoeveelheid, aangeduid met SSE, is het residu dat wordt
berekend voor elke waarneming in het monster, elk residu wordt in het kwadraat geplaatst en
vervolgens is SSE de som van deze kwadraten.


5

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller maartjepaauw. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.54. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

69252 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$7.54  2x  sold
  • (1)
Add to cart
Added