Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting bouwstenen van het leven

Note
-
Vendu
-
Pages
15
Publié le
02-02-2023
Écrit en
2022/2023

Samenvatting bouwstenen van het leven, bevat alle hc's en alle tentamenstof. Ik heb hiervoor de aantekeningen gebruikt van de hoorcolleges, waar ik allemaal ben geweest. Ik heb hier een 8,1 mee gehaald

Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Publié le
2 février 2023
Nombre de pages
15
Écrit en
2022/2023
Type
Resume

Sujets

Aperçu du contenu

Bouwstenen van het leven DT

I. Elements & Energies
I.1 Elements in cells
Atoomnummer = Protonen
Atoommassa = Protonen + neutronen

Covalente bindingen is het delen van een elektronenpaar om buitenste schil vol te hebben

Elektronegativiteit Δ EN = Hoe hard een atoom aan elektronen trekt, als de ene harder trekt dan de
ander krijg je δ - en δ +. Afhankelijk van:
1. Grootte elektronenwolk
2. Afstand buitenste schil tot kern
3. Ladingsdichtheid van kern
∆ EN >0,4 = Polaire atoombinding, anders is het apolaire atoombinding.
Als ze heel hard trekken krijg je een (+)atoom en (-)atoom  Ionbinding. Deze binding is sterker dan
covalente.

Water = Polair, O trekt harder aan elektronen dan H + en wordt dus -.

Deprotonatie = Afstaan H+
Protonatie = Opnemen H+

Reductor  Reactieproduct + e- (oxidatiereactie). A wordt geoxideerd, staat elektron af
Oxidator + e-  Reactieproduct (reductiereactie). B wordt gereduceerd, neemt elektron op

I.2 Energy
Elektrische energie wordt gedreven door verschil in elektrisch potentieel.

Enthalpy (H) = Hoeveelheid energie die in reactie wordt gestoken/vrijkomt  Daalt als er bindingen
worden gevormd
∆ H is verandering van warmte inhoud in een systeem

Entropie (S) = Maat voor wanorde in een systeem, hoge entropie  hoge wanorde, lage energie.
Toestand van lagere energie is meer waarschijnlijk. Lage energie kan je krijgen door eerst energie toe
te voegen  Bindingen verbreken  Lagere G
Voor wanorde moet er energie in systeem worden toegevoegd.

Vrije energie Gibb’s = Hoeveelheid vrije energie, kan richting van reactie voorspellen.
∆ G=∆ H−T ∆ S
∆ G >0, Endogeen, energie nodig
∆ G =0, Geen reactie, evenwicht
∆ G <0, Exogeen, energie komt vrij
Spontane reactie  Negatieve G
∆ G=−Rt ×ln ⁡( Keq)
Keq is evenwichtsconstante van reactie

, Eerste wet thermodynamica  Energie kan niet worden gemaakt of verdwijnen, alleen omgezet.
Energie veranderen:
1. Arbeid verrichten aan systeem/Arbeid verrichten op omgeving
2. Energie toevoegen aan systeem/Systeem uit systeem, naar omgeving
Tweede wet thermodynamica  Spontaan proces vergroot wanorde in omgeving
Stotaal = Ssysteem + Suniversum
Cellen willen orde dus wordt continu warmte afgegeven aan universum  Hogere entropie in
omgeving

Enthalpie-gedreven: Exotherme reacties, bindingen vormen  warmte vrij in universum  entropie
omgeving wordt groter
Entropie-gedreven: Endotherme reacties, bindingen verbreken  entropie omgeving wordt kleiner,
entropie in systeem wordt groter

I.3 Interactions
Bindingsenergie komt vrij bij maken van bindingen en is nodig om bindingen te verbreken
- Bindingsvorming = exotherm, bindingsenergie komt vrij
- Bindingsbreuk = endotherm, bindingsenergie is nodig

Non polaire moleculen hebben voorkeur voor non polaire omgeving. Wanneer hydrofobe bindingen
in water komen dan gaat water in geordende structuur.
Sterk geordend = Energetisch nadelige toestand  Dus hydrofobe delen gaan bij elkaar zodat water
vrijer kan bewegen.
= Hydrofobe effect

I.4 Affinity
Gibb’s free energy kan op zelfde manier worden berekend bij affiniteit, alleen Keq is dan Ka (associatie
constante)
∆ G °=−RT × ln ⁡(Ka)
Voor bindingsaffiniteiten gebruik je dissociatie constante (Kd), dat is het omgekeerde voor Ka

Kleine Kd betekent hoge affiniteit

Situatie van gebonden moleculen is lagere energie omdat bindingsenergie eruit is

Hoeveel microscopische toestanden van een macrostate bestaan  multipliciteit ()

I.5 ATP
Lineaire suikermoleculen kunnen spontaan veranderen naar ringstructuur = Evenwicht tussen deze
confirmaties

In een suiker kunnen groepen aan de rand vrij roteren en -confirmaties en -confirmaties
aannemen. Wij kunnen alleen -hydroxyl afbreken.
-hydroxyl en -hydroxyl

Monomeren aan elkaar koppelen  polysachariden

Hydrolyse van ATP levert energie op, is spontane reactie. ATP  ADP + Pi
$7.08
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
giuliavanerkel
3.5
(2)

Faites connaissance avec le vendeur

Seller avatar
giuliavanerkel Vrije Universiteit Amsterdam
S'abonner Vous devez être connecté afin de suivre les étudiants ou les cours
Vendu
8
Membre depuis
2 année
Nombre de followers
7
Documents
13
Dernière vente
1 année de cela

3.5

2 revues

5
1
4
0
3
0
2
1
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions