100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary Linear Models in Statistics | All Theory from Slides $14.68   Add to cart

Summary

Summary Linear Models in Statistics | All Theory from Slides

 7 views  0 purchase
  • Course
  • Institution

All theory from slides in the course Linear Models in Statistics, provided by dr. M. Kesina. Covers all topics discussed in this course.

Preview 4 out of 62  pages

  • February 8, 2023
  • 62
  • 2022/2023
  • Summary
avatar-seller
Linear Models in Statistics
Theory
EBB072A05
Semester I B


Wouter Voskuilen
S4916344
Slides by dr. M. Kesina




1

,Wouter Voskuilen Linear Models in Statistics


Contents
1 Chapter 1: Matrix Algebra 3
1.1 Vectors and Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Rank, Determinant, and Inverse . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.3 Eigenvalues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.4 Positive (semi) Definite Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.5 Projection Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.6 Partitioned Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.7 Differentiation Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Chapter 2: Random Vectors 17
2.1 Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.2 Operations and Transformations . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.3 Expected Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.4 Variance-covariance matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.5 Correlation matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.6 General Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3 Chapter 3: Multivariate Normal and Related Distributions 23
3.1 Univariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2 Multivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.3 Related Distributions: χ2 , F , and t distribution . . . . . . . . . . . . . . . . . 25
3.4 Results on Quadratic Forms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.5 Distribution Check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4 Chapter 4: Linear Model 28
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.2 OLS Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.1 Bivariate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2.2 Multivariate Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 Goodness of Fit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.4 Properties of the OLS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.5 Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.6 Maximum Likelihood Estimation . . . . . . . . . . . . . . . . . . . . . . . . . 49
4.7 Frisch-Waugh-Lovell Theorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
4.8 Wrong Specification of the Regressor Matrix . . . . . . . . . . . . . . . . . . . 56
4.9 Violation of the OLS Assumptions . . . . . . . . . . . . . . . . . . . . . . . . 60
4.9.1 Violation of Assumption A.2 . . . . . . . . . . . . . . . . . . . . . . . 60
4.9.2 Violation of Assumption A.4 . . . . . . . . . . . . . . . . . . . . . . . 60




2

,Wouter Voskuilen Linear Models in Statistics


1 Chapter 1: Matrix Algebra
1.1 Vectors and Matrices
Let  
a1
 a2 
a= . 
 
 .. 
an
a is called a vector (column vector).
The elements ai for i = 1, ..., n are called elements or components of a. n is the order of the
vector.

Let a and b be two vectors, which have the same order n.
Summation of two vectors:
     
a1 b1 a1 + b1
 a2   b2   a2 + b2 
a+b= . + . = . 
     
 ..   ..   .. 
an bn an + bn

Vector summation is:

− Commutative: a + b = b + a

− Associative: (a + b) + c = a + (b + c), where c is a vector of the same order as a and
b.

Multiplication of a vector with a scalar λ
 
a1
 a2 
λa = λ  . 
 
 .. 
an

Inner or scalar product of two vectors a and b of the same order n
n
X
⟨a, b⟩ = a′ b = ai bi .
i=1

The length (or norm) of a vector

∥a∥ = ⟨a, a⟩1/2 = a′ a.


3

, Wouter Voskuilen Linear Models in Statistics


Any nonzero vector can be normalized by
1
ao = a.
∥a∥
A normalized vector has norm 1.

Collinearity of two vectors a and b
a = λb
for some scalar λ.

Two vectors a and b with ⟨a, b⟩ = 0 are called orthogonal.
If ⟨a, b⟩ = 0 and ∥a∥ = ∥b∥ = 1, then a and b are called orthonormal.

Outer product of two vectors a and b of the same order
 
a1 b1 · · · a1 bn
ab′ =  ... .. .. 

. . 
an b1 · · · an bn

Unit vectors or Elementary vectors ej :
ej consists of zeros and a single one on the jth position.
Unit vectors are orthonormal.

Vector of ones ιn :
ιn consists of ones only. The index indicates the size.
ιn is also called the sum vector
n
X n
X
ι′n a = ιi a i = ai .
i=1 i=1


Let  
a11 · · · a1m
 .. .. .. 
A= . . . 
a1n · · · anm
The matrix A is of order/size/dimension n × m.
We also write A = {aij } and Aij = aij .

Let A be a n × m matrix.
− A is square if n = m.

− A is symmetric if n = m and aij = aji , i, j = 1, ..., n.

4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller woutervoskuilen. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $14.68. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

75632 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$14.68
  • (0)
  Add to cart