100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Variable y Función Compleja $6.35
Add to cart

Class notes

Variable y Función Compleja

 1 view  0 purchase
  • Course
  • Institution

Incluye operaciones elementales de la variable compleja así como la introducción de las funciones complejas.

Preview 2 out of 5  pages

  • February 17, 2023
  • 5
  • 2022/2023
  • Class notes
  • María higuera
  • All classes
avatar-seller
VARIABLE COMPLETA

fk = k
utorno
=> = Bola abierta = B([0.3)=(ECK/120-21 9}
f(z) f(x = + iy) (
=
u+
- iv u(x,y) + iv(x,y)
-




Argumento principal: Oc(M. i]


Ejemplo:


8: D: IRF 8:1 i
DIE 1E1 + Arg(z)
Arglz)

f(z) (t) =




"I
·

·I -
L
-

B ⑱ a




"I'll

condiciones para que una funcion sea funcion:


-




-
Todos los elementos del



Un elemento del conjunto
conjunto departida tienen imagen.


departida solo puede tener una imagen.
B
Hay algunas funciones son multievaluadas, decir funciones los cuales los elementos del dominio le corresponden varias
que es en a




imagenes. - P.e.f(x) x =




En
f(x) =
xhaydosramas, Hay que elegir una rama con la cual trabajar.



LIMITE DE FUNCIONES COMPLEJAS




limf(x-ec.53:5850/1EEK6:18171.1K9 Paracalcular el limite de
estedefinida
una funcion no have falta
que la funcion que
en el punts.

LIMITEENO Eiemplo:
line f(b/z) lim 1. E
1 E
-




E + O E +1




LIMITE INFINITO lim 1-(1 -
(1) 1 lim
5-(+ix) 1
-
j =


x 01 (x + iy)
=

- x1
= 1-(1-iy)
x+1 *
8

lime
+ 8
(f(2) = 0

E


CONTINUIDAD

Yes continua en to si,x9+058%0/12.Cokc8 =
(812) f(colk


limf(x) =
f(20) Esta no
hay que usaat

, EjemplO:


lim
E s
1s.lime 4RzeidreiG"

+a
=


lim
(2 -3i)(2 + 3i)
lim =
6i
=




E + 5i = 3i Ei3i E -
3




DERIVADA DE
f1z)

PREVI8 i




8: IRP: 1R9


of -lim flx+af(x). Derivada can respects a or
unreco




I
La derivabilidad no implica continuidad.


La diferenciabilidad si implica continuidad



dEl)
lf(x h1 f(x)
↓i.
m
+ - -
0
=




1 ill



La funciones diferenciable mando existen (as derivadas parciales, son continuas.



seaf: A -PI ECA



f1)
limf(z
(z)
f'(z)
+
-


=




NZ




=emplo:


f(z) 2 =




(2 -z-
+521
Uz
in
lim
o NZ
Xz + 8


+x
0im-itt
=




I gota
Nz 0x iUY No derivable ningan punto.
dimso
= + es en


inme UN 1
loss =


XX + y WN
Nz Ux-iUY
=

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller AeroLibrary. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $6.35. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

50990 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$6.35
  • (0)
Add to cart
Added