100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Ecuaciones Diferenciales en Derivadas Parciales $13.40   Add to cart

Class notes

Ecuaciones Diferenciales en Derivadas Parciales

 2 views  0 purchase
  • Course
  • Institution

Incluye los métodos de resolución de las siguientes ecuaciones: -Ecuaciones diferenciales en derivadas parciales de primer orden. -Ecuación de Ondas. -Ecuación de Calor. -Ecuación de Laplace. También incluye la teoría acerca de las series de Fourier para resolver las ecuaciones.

Preview 3 out of 23  pages

  • February 17, 2023
  • 23
  • 2022/2023
  • Class notes
  • María higuera
  • All classes
avatar-seller
ECUACIONES DIFERENCIALES ENDERIVADAS PARCIALES DE
PRIMERORDEN



CONSERVADON
LEYES DE AD



·
u(x.t) Magnitud(masa, energia etc.


·
p(x, t, u,u(...) Flujo


f(x, t, u) Fuentes
·




Let be conservacise forma integral
u(x.t)dx 8(x2 0/15
1)"20x
·
on =

-




20
Lex be conservacios forma diferencial (i.e., AX):
Gv(X,t) g
·
X2 x1
*
en + +
=




2/




ONDAS ESTACIONARIAS



La ecuacio's diferencial en derivadas parciales mas simple para una funcion de dos variables
es 0
=




t


Para resolverla integramos a ambos lados de la ecacion:
2u(s,y)ds u(t,t) u(0,4
= -
0




por esola solucion dela forma:u(t,x) f(x),
as conde
f(x) w(0.4)
= =




El lnico requerimiento es
que f(x) sea sufficientements regular.


La solucion representa una anda estacionaria (no depende del tiempol.



ONDAS VIAJERAS. ECUACION DETRANSPORTE



Considers la siguiente ecuacion:
Gu cayto +




Aesta ecuacion se la conoce can nombred ecuacion de transporte.

Es necesario especificar la solucion en untiempo inicial, dando lugar al problema devalores iniciales. ults, x) f(x)
=
&tCR

xU
u(t,y)
x(t)"du-2u+Oudoet
11x
x =




d* (t
=(t)
a
=
=
+
1 >
Curva caracteristic
LX (t k
+




considere unobservador describiendo una trajectoria (x (t), 4). Como varia what) segan la perspectiva del observator?

du du(x(t),t)
uxdy ut
=
=




dt dt

,dy c
=




ydy u++..
=




Por tanto las soluciones de la ecuacion de transporte son las mismas
que las del sistema de EDOs.


Ut (uX 0
+
=
dx 0
=




dt




u(t,y) f(X) =



du=o
Eiemple.

xU
+chy=
Gu 0;u(0,X) f(X
=




2t




u(t,y)
x(t)du-2u+Oudoet
11x
x = LX (t k
+




d* (t caracteristic
=(t)
u
a
=
=
1
+ >
Curva
f(x) w(0,X)
=




x(t) (t 11
= +

1(0) 5 = +
k7 5 =




↑ ↑




u(t,X(t)) k2u(0) f(s)
f(s) ke
=
=
= =




+
it
X(t,s) (t =
s
+
+
5 1 = -
ct

Yu(t, x) f(x (t)
=

ult,x) f(x ct.)
=




u(t,s) f(s);u(x,t)
f(x ct)
=

=
-




ECUACIONES CASI-LINEALES:METODO DE LAS CARACTERISTICAS


a(x,y,u)ux p(X,y,u)ay ((X,y,u)(I) +
=




15) (a,p,c).(ux,uy, 1)
+
= 0
Gualquier curva superficie S tiene vector tangente a (a,p,c)


has curvas caracteristicas satisfacen el signiente sistema:



EX a(x,y,u);d b(x,y,u);du can see
=
= -




La elacion (1) tiene condiciones iniciales:u/f(s), g(s)) h(s),
=
se



Entonces el sistema tiene condiciones iniciales:



1(0) 10(s,0)
=
=

f(s),y(0) y0(s.0) =g(s), =
w(0) 40(s,0) h(s)
=
=

, Ejemplo:

S.u u(X,y)
=




5:H(x,y,u) u(x,y)
=
-
u 0
=




dy ((X,y,u) u(t,s) 0
=

=




dy a(X,y,n) x(t,5) 0
=
=




dy=b(x,y,u) y(t,s) 0 =




y(0) X(s);y(0) y(s);u() u(s)
= = =




S:(X,y,u)(t,s)



METODO PARA RESOLVER LAS ECUACIONES CASILINEALES
DE LAGRANGE




Ejemploi



u,isent
1,ux x*7 yu
1
+
=
10(s) 8
=




tolst=s
no(s) sen(s)




u1o."1.
s

e
=




·
La solucion aparece de form a
(0-426
/4 (00*7c8R
7




( (, (1,1,u) x
-
=
11i
=
=
=




by X
=
implicita, como interseccion de dos
Dt


(* (2u*
du u
dly: /0u (0 4(0,4,u) = Superficies.In
=
su +
u
=
=
=
= ·




bt ↑
&




solucion general:FCP IFFFuncion = arbritarial sF( = =0 f(4242) ve*
= =




u(0,y) sen(y)= 5(4e(2) senye*;5(4)= seny
+
=




ne*k senle*(2):u(,1) eksenlie*2)
= =

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller AeroLibrary. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $13.40. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67474 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$13.40
  • (0)
  Add to cart