Interview
Linear Algebra
1-Systems of Linear Equations
2-Row Reduction and Echelon Forms
3- Vector Equations
4-The Matrix Equation Ax = b
5-Homogeneous and Nonhomogeneous Systems
6-Matrix Algebra
......and more.
[Show more]
Preview 4 out of 206 pages
Uploaded on
March 9, 2023
Number of pages
206
Written in
2020/2021
Type
Interview
Company
Unknown
Person
Unknown
alegbra
linear aglebra
vector equations
row reduction
the matrix equation
matrix algebra
invertible matrices
notes
lecture notes
Institution
Secondary school
MCV 4U
School year
5
All documents for this subject (1)
$7.99
Added
Add to cart
Add to wishlist
100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached
MATH 233 - Linear Algebra I
Lecture Notes
Cesar O. Aguilar
Department of Mathematics
SUNY Geneseo
,
, Lecture 0
Contents
1 Systems of Linear Equations 1
1.1 What is a system of linear equations? . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 Solving linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.4 Geometric interpretation of the solution set . . . . . . . . . . . . . . . . . . 8
2 Row Reduction and Echelon Forms 11
2.1 Row echelon form (REF) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2 Reduced row echelon form (RREF) . . . . . . . . . . . . . . . . . . . . . . . 13
2.3 Existence and uniqueness of solutions . . . . . . . . . . . . . . . . . . . . . . 17
3 Vector Equations 19
3.1 Vectors in Rn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3.2 The linear combination problem . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.3 The span of a set of vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
4 The Matrix Equation Ax = b 31
4.1 Matrix-vector multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2 Matrix-vector multiplication and linear combinations . . . . . . . . . . . . . 33
4.3 The matrix equation problem . . . . . . . . . . . . . . . . . . . . . . . . . . 34
5 Homogeneous and Nonhomogeneous Systems 41
5.1 Homogeneous linear systems . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.2 Nonhomogeneous systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
6 Linear Independence 49
6.1 Linear independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 The maximum size of a linearly independent set . . . . . . . . . . . . . . . . 53
7 Introduction to Linear Mappings 57
7.1 Vector mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
7.2 Linear mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
7.3 Matrix mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
7.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3
, CONTENTS
8 Onto, One-to-One, and Standard Matrix 67
8.1 Onto Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
8.2 One-to-One Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
8.3 Standard Matrix of a Linear Mapping . . . . . . . . . . . . . . . . . . . . . . 71
9 Matrix Algebra 75
9.1 Sums of Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
9.2 Matrix Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
9.3 Matrix Transpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
10 Invertible Matrices 83
10.1 Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
10.2 Computing the Inverse of a Matrix . . . . . . . . . . . . . . . . . . . . . . . 85
10.3 Invertible Linear Mappings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
11 Determinants 89
11.1 Determinants of 2 × 2 and 3 × 3 Matrices . . . . . . . . . . . . . . . . . . . . 89
11.2 Determinants of n × n Matrices . . . . . . . . . . . . . . . . . . . . . . . . . 93
11.3 Triangular Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
12 Properties of the Determinant 97
12.1 ERO and Determinants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
12.2 Determinants and Invertibility of Matrices . . . . . . . . . . . . . . . . . . . 100
12.3 Properties of the Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . 100
13 Applications of the Determinant 103
13.1 The Cofactor Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
13.2 Cramer’s Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
13.3 Volumes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
14 Vector Spaces 109
14.1 Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
14.2 Subspaces of Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
15 Linear Maps 117
15.1 Linear Maps on Vector Spaces . . . . . . . . . . . . . . . . . . . . . . . . . . 117
15.2 Null space and Column space . . . . . . . . . . . . . . . . . . . . . . . . . . 121
16 Linear Independence, Bases, and Dimension 125
16.1 Linear Independence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
16.2 Bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126
16.3 Dimension of a Vector Space . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
17 The Rank Theorem 133
17.1 The Rank of a Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4