Summary Applied Statistics and Probability for Engineers, 7th Edition Asia Edition, ISBN: DD80 (2DD80)
14 views 0 purchase
Course
2DD80 (2DD80)
Institution
Technische Universiteit Eindhoven (TUE)
Book
Applied Statistics and Probability for Engineers, 7th Edition Asia Edition
This document provides a summary of all theory and formulas from the chapters 4 to 12 inclusive (except for chapter 6) book 'Applied Statistics and Probability for Engineers' taught in the statistic course 2DD80.
Chapter 4 to 12 inclusive (except for chapter 6 which is not covered)
March 9, 2023
29
2020/2021
Summary
Subjects
continous random variable
probability distribution
cumulative distribution
normal distribution
exponential distribution
erlang distribution
lognormal distribution
weibull distribution
beta distributio
Connected book
Book Title:
Author(s):
Edition:
ISBN:
Edition:
Written for
Technische Universiteit Eindhoven (TUE)
Industrial Engineering
2DD80 (2DD80)
All documents for this subject (1)
Seller
Follow
evamaria45
Content preview
Summary statistics for IE
All content and pictures are from the following book:
Montgomery, D. C., & Runger, G. C. (2018). Applied Statistics and Probability for
Engineers: Study Guide.
Contents
Chapter 4: Continuous random variables and probability distributions .................................. 3
4.1: Probability distributions and probability density functions ............................................ 3
4.2: Cumulative distribution functions ................................................................................ 3
4.3: Mean and variance of a continuous random variable .................................................. 3
4.4: Continuous uniform distribution .................................................................................. 4
4.5: Normal distribution ...................................................................................................... 4
4.6: Normal approximation to the binomial and Poisson distributions ................................ 4
4.7: Exponential distribution............................................................................................... 5
4.8: Erlang and gamma distributions ................................................................................. 5
4.9: Weibull distribution ..................................................................................................... 6
4.10: lognormal distribution................................................................................................ 6
4.11: Beta distribution ........................................................................................................ 6
Chapter 5: joint probability distributions ................................................................................. 7
5.1: joint probability distributions for two random variables ................................................ 7
5.2: Conditional probability distributions and independence............................................... 8
5.3: Joint probability distributions for more than two random variables .............................. 8
5.4: Covariance and correlation ......................................................................................... 9
5.5: Common joint distributions ....................................................................................... 10
5.6: Linear functions of random variables ........................................................................ 11
5.7: General functions of random variables ..................................................................... 11
Chapter 7: point estimation of parameters and sampling distributions ................................. 11
7.1: point estimation ........................................................................................................ 11
7.2: Sampling distributions and the central limit theorem ................................................. 12
7.3: General concepts of point estimation ........................................................................ 12
Chapter 8: statistical intervals for a single sample ............................................................... 13
8.1: confidence interval on the mean of a normal distribution, variance known ................ 13
8.2: confidence interval on the mean f a normal distribution, variance unknown .............. 14
8.3: confidence interval on the variance and standard deviation of normal distribution .... 14
1
, 8.4: large sample confidence interval for a population proportion .................................... 14
8.7: Tolerance and prediction intervals ............................................................................ 15
Chapter 9: tests of hypotheses for a single sample ............................................................. 15
9.1: hypothesis testing ..................................................................................................... 15
9.2: tests on the mean of a normal distribution, variance known ...................................... 15
9.3: tests on the mean of a normal distribution, variance unknown .................................. 17
9.4: tests on variance and standard deviation of normal distribution ................................ 17
9.5: tests on population proportion................................................................................... 17
9.7: goodness of fit .......................................................................................................... 18
9.8: Contingency table tests ............................................................................................ 19
Chapter 10: Statistical inference for two samples ................................................................ 19
10.1: inference on difference in means of two normal distributions, variances known ...... 19
10.2: Hypotheses test on the difference in means, variances unknown ........................... 20
10.4: paired t-Test ........................................................................................................... 22
10.6: inference on two population proportions ................................................................. 23
Chapter 11: simple linear regression and correlation........................................................... 24
11.1: empirical models..................................................................................................... 24
11.2: simple linear regression .......................................................................................... 24
11.3: properties of the least squares estimators .............................................................. 26
11.4: Hypothesis tests in simple linear regression ........................................................... 26
11.5: confidence intervals ................................................................................................ 26
11.6: prediction of new observations ............................................................................... 27
11.8: Correlation .............................................................................................................. 27
11.9: Regression on transformed variables ..................................................................... 27
Chapter 12: multiple linear regression ................................................................................. 27
12.1: multiple linear regression model ............................................................................. 27
12.2: hypothesis tests in multiple linear regression .......................................................... 28
12.3: confidence intervals in multiple linear regression .................................................... 28
12.5: model adequacy checking ...................................................................................... 29
2
, Chapter 4: Continuous random variables and probability distributions
4.1: Probability distributions and probability density functions
Continuous random variable: random variable with an interval (either finite or infinite) of
real number for its range.
Probability density function (f(x)): can be used to describe probability distribution of
continuous random variable X. If an interval is likely to contain a value for X, its probability is
large and it corresponds to large values for f(x).
3 conditions:
1. 𝑓(𝑥) ≥ 0
∞
2. ∫−∞ 𝑓(𝑥) 𝑑𝑥 = 1
𝑏
3. 𝑃(𝑎 ≤ 𝑋 ≤ 𝑏) = ∫𝑎 𝑓(𝑥) 𝑑𝑥 = area under f(x) from a to b for any a and b
Histogram: approximation to a probability density function. The area of each interval of the
histogram equals the relative frequency (proportion) of measurements in the interval.
𝑃(𝑋 = 𝑥) = 0
If X is a continuous random variable, for any x1 and x2:
𝑃(𝑥1 ≤ 𝑋 ≤ 𝑥2 ) = 𝑃(𝑥1 < 𝑋 ≤ 𝑥2 ) = 𝑃(𝑥1 ≤ 𝑋 < 𝑥2 ) = 𝑃(𝑥1 < 𝑋 < 𝑥2 )
4.2: Cumulative distribution functions
The cumulative distribution function of a continuous random variable X is:
𝑥
𝐹(𝑥) = 𝑃(𝑋 ≤ 𝑥) = ∫−∞ 𝑓(𝑢) 𝑑𝑢 𝑓𝑜𝑟 − ∞ < 𝑥 < ∞
Any < can be changed into ≤ in the definition of F(x). The probability density function of a
continuous random variable can be determined from the cumulative distribution function by
differentiating.
𝑑 𝑥 𝑑𝐹(𝑥)
∫ 𝑓(𝑢) 𝑑𝑢
𝑑𝑥 −∞
= 𝑓(𝑥) and 𝑓(𝑥) =
𝑑𝑥
4.3: Mean and variance of a continuous random variable
Suppose that X is a continuous random variable with probability density function f(x).
Mean / expected value:
∞
𝜇 = 𝐸(𝑋) = ∫ 𝑥𝑓(𝑥) 𝑑𝑥
−∞
∞
𝐸[ℎ(𝑋)] = ∫ ℎ(𝑥)𝑓(𝑥) 𝑑𝑥
−∞
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller evamaria45. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $11.26. You're not tied to anything after your purchase.