A course on matrices and vector spaces, also known as linear algebra, is a fundamental subject in mathematics that deals with linear equations, systems of equations, and the properties of vectors and matrices.
The course starts with an introduction to matrices, which are rectangular arrays of nu...
2 Résolution des systèmes linéaires (Pivot de Gauss) . . . . . . . . . . . . . . . . . . . 23
2.0.1 Les matrices élémentaires .............................................................. 23
2.1 Matrices échelonnées ............................................................................. 25
2.1.1 Équivalence à une matrice échelonnée ............................................. 26
2.1.2 Inverse d’une matrice - Méthode Gausse .......................................... 29
2.2 Systèmes linéaires ................................................................................. 32
2.2.1 Matrices et systèmes linéaires ........................................................ 32
2.2.2 Matrices inversibles et systèmes linéaires ........................................ 32
3
, 1. Matrices (Définitions et propriétés).
1.1 Calcul Matriciel ........................................................ 4
1.2 Quelques propriétés des matrices carrées .................... 14
Dans ce chapitre, K désigne un corps. On peut penser à Q, R ou C.
1.1 Calcul Matriciel
1.1.1 Définition et notations
Definition 1.1.
Soit (n, p) ∈ N∗ .
On appelle matrice de type (n, p) ou de format n×p à coefficients dans K, un tableau
rectangulaire A à n lignes et p colonnes d’éléments de K, c’est-à-dire
Et en abrégé: A = ai,j 16i6n ou plus simplement (aij ) lorsqu’il n’y a pas de confu-
16j6p
sion.
• Les ai,j sont appelés coefficients de la matrice A. L’élément ai,j correspond a
la valeur de l’intersection de la ligne i et de la colonne j.
• On dit que A est de taille n × p.
L’ensemble des matrices à n lignes et p colonnes à coefficients dans K est noté
Mn,p (K). Si K = R les éléments de Mn,p (R) sont appelés matrices réelles.
Exemple 1.1 !
1 −2 5
A=
0 3 7
est une matrice 2 × 3 avec, par exemple, a1,1 = 1 et a2,3 = 7.
4
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller mohamed-aminerhounna. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $2.99. You're not tied to anything after your purchase.