100% Zufriedenheitsgarantie Sofort verfügbar nach Zahlung Sowohl online als auch als PDF Du bist an nichts gebunden
logo-home
Fonctions réelles $6.20
In den Einkaufswagen

Notizen

Fonctions réelles

 0 mal verkauft
  • Kurs
  • Hochschule

Il s'agit d'un PDF avec des annotations concernant les interprétation du PDF et les formules usuelles. Le PDF traite des fonctions réelles dans sa globalité avec tous les théorèmes.

vorschau 2 aus 10   Seiten

  • 23. märz 2023
  • 10
  • 2021/2022
  • Notizen
  • Couet
  • Fin de terminale jusqu'en étude supérieure
avatar-seller
Fon ctio ns fR ~ fR
1. Ens emb le de défi nitio n
L'en sem ble de défi nitio n de f est l'ens emb
le des vale urs de x telles qu'o n puis se effe ctive
f(x). Pou r cela, on rega rde les déno min ateu men t calc uler
rs, racin es, quot ients , loga rithm es, tang ente
s .. .
Le prob lème est plus com plex e pour une fonc '
tion défin ie par une intég rale
. lb(x) lb
f (t) dt ou. f (x, t) dt .
a(x) a
(De plus , si l'int égra le est géné ralis ée, il faut
mêm e cher cher les x tels que l'int égra le conv
erge ...) Ell\h 2
2. Mon oton ie

Défi nitio n : f est croi ssàn te sur I un inte rv_alle <=>(va, be I, a< b => f (a)~ f (b))
f est stric tem ent, croi ssan te sur I un intervalle
<=> (va, be I, . a< b => f(a) < f(b) )

Thé orèm e: f est déri vabl e sur I, un inte rval le,
f est croi ssan te sur I <=> f'(x);;,: 0 sur I

Thé orèm e : fdéri vabl e sur I, un inte rval le,
f'(x ) ~ 0 sur I et f' ne s'an nule qu'e n des
poin ts isolés, ⇒ f est stric teme nt croi ssan
te sur 1.
Cett e dern ière imp licat ion n'est pas une équi
vale nce ...

Thé orèm e: Une fonc tion crois s_ante , majo
rée sur [a, b[, adm et une limi te finie en b.
Thé orèm e: f cont inue , stric teme nt mon
De plus , 1-1 est alor s cont inue sur f (1).
oton e sur I un inter valle est une bijec tion
.
de I sur f (I).) k-fc-.l..1-
.

3. Lim ite et con tinu ité
Défi nitio n: limf (x) = l <=> VE> 0, 3a> 0,
x--+a lx-à l ~a ⇒ lf(x) - ll ~E.
Si, de plus ; l = f(a), on dit que f est cont inue
en a.
Défi nitio n: Prolonge1:1ent par continuité
Si lim/ (x) = l, et, si f n'est pas défin ie en
~
x-+a . a, alors qn défi nit f, la prol ongé e par cont inui té de f
.
par :
• f~( ) - l . .
. a - , . ~~1- o-\.. '.c,,. . :
• f(x) =/(x ) quan d x:;:. a. . 0 '.J-
~ Q.:. ~ "° .,Q.,.,. V ,.,. ,.L..J\
,~·
Tes t bien sûr cont inue en a! ~°"'~
1 On a une·autr e défi nitio n de limi te en +oo, ~}.::
qu'o n peut adap ter en -oo. -,.: ..- ~ - ~ . , . u . ~--~~~~n~~-•r·~~
"'
Qr - + ~

_Défi nitio n: lim f (x) = l <=> VE> 0, W ~ ~:L
x--++oo
3A > 0, x ;;,: A => If (x) - li ~ E.
On a enço re une défi nitio n quan d la limi te
est infin ie, qu'o n peut adap ter pou r une limi
te -oo.
Défi nitio n: lim f (x) = +oo <=>VA> 0, 3 '
x--+a a> 0, lx-a l ~ a ⇒ f(x) ~ A.
Et, enfin, une dern ière défi nitio n pou r une
limi te infin ie à l'infin~, qu'o n peut . . .
Déf initi on: lim
x--++oo
f (x) = +oo <=>VA:> 0, 3 B > 0, x~ B⇒ f (x) ;;J!: A.
Thé orèm e: Une fonc tion .adm etta nt une
limi te finie _en un poin t est born ée au vois
inag e de ce poin t.




\

, ~ C)... .,,,.,._,,_~ °"'"~~ tl"-
.. 00
~ fil-) = + = J- ~ ~e1.u ~ ~c.t oœ-~~ Q,.. + C()


ên~-~
~( ).\ -= _::!_ ~ ")_ - 2..
:X ---:1..


fJ t -= IR .\ 1 -1 ]

tJ cc,...lr,.i.,& J.- ~NJ.,l_ n\4\. ] - ~ Î ~ [ v\, J '\-+ Cf' [
~ rl ·~ ~ :
~ ~ r ).' -:: +
.,., ....
oO ~- ~~
..,i-
~\:i.\ -:: - <X·


..., //


0- y f.,n ~J,~..
-r-~\-... ~c,-_ ~- 6 r--. . ,.)- -1-- /YV'c.i~
)1~ ~,..,_ . tîr fNJU-li Q,- + = (J""1. C/\~G.'lü ~cr-,-(_
O ,_ t c,JU. \ ~ ) _, 'ô~- ~ - 2

~= ~H - {.>. -i) -;; ~= ;_,, -: o+ Cc,,, t,.,.. cr~) -(
-\. Cl:)
i.. - 2) ">o

Î). r;r.i_ { J) J- ~ ~ - ~'c,.(J._ ch ~ q,..... + a<)

Alle Vorteile der Zusammenfassungen von Stuvia auf einen Blick:

Garantiert gute Qualität durch Reviews

Garantiert gute Qualität durch Reviews

Stuvia Verkäufer haben mehr als 700.000 Zusammenfassungen beurteilt. Deshalb weißt du dass du das beste Dokument kaufst.

Schnell und einfach kaufen

Schnell und einfach kaufen

Man bezahlt schnell und einfach mit iDeal, Kreditkarte oder Stuvia-Kredit für die Zusammenfassungen. Man braucht keine Mitgliedschaft.

Konzentration auf den Kern der Sache

Konzentration auf den Kern der Sache

Deine Mitstudenten schreiben die Zusammenfassungen. Deshalb enthalten die Zusammenfassungen immer aktuelle, zuverlässige und up-to-date Informationen. Damit kommst du schnell zum Kern der Sache.

Häufig gestellte Fragen

Was bekomme ich, wenn ich dieses Dokument kaufe?

Du erhältst eine PDF-Datei, die sofort nach dem Kauf verfügbar ist. Das gekaufte Dokument ist jederzeit, überall und unbegrenzt über dein Profil zugänglich.

Zufriedenheitsgarantie: Wie funktioniert das?

Unsere Zufriedenheitsgarantie sorgt dafür, dass du immer eine Lernunterlage findest, die zu dir passt. Du füllst ein Formular aus und unser Kundendienstteam kümmert sich um den Rest.

Wem kaufe ich diese Zusammenfassung ab?

Stuvia ist ein Marktplatz, du kaufst dieses Dokument also nicht von uns, sondern vom Verkäufer grgoirefoucault. Stuvia erleichtert die Zahlung an den Verkäufer.

Werde ich an ein Abonnement gebunden sein?

Nein, du kaufst diese Zusammenfassung nur für $6.20. Du bist nach deinem Kauf an nichts gebunden.

Kann man Stuvia trauen?

4.6 Sterne auf Google & Trustpilot (+1000 reviews)

45.681 Zusammenfassungen wurden in den letzten 30 Tagen verkauft

Gegründet 2010, seit 15 Jahren die erste Adresse für Zusammenfassungen

Starte mit dem Verkauf

Kürzlich von dir angesehen


$6.20
  • (0)
In den Einkaufswagen
Hinzugefügt