Summary Data Science Methods
Contents
Week 1..................................................................................................................................................... 5
Notations ............................................................................................................................................. 5
Supervised learning ............................................................................................................................. 6
Why estimate f? Prediction vs Inference ........................................................................................ 7
Parametric vs Non-parametric Methods ......................................................................................... 8
Smooth Spline.................................................................................................................................. 8
Rough Spline .................................................................................................................................... 8
Prediction Accuracy and Interpretability......................................................................................... 8
Numerical Optimization .................................................................................................................. 9
Supervised Learning: Regression vs Classification .............................................................................. 9
Unsupervised learning......................................................................................................................... 9
Assessing Model Accuracy............................................................................................................. 10
Measuring Model Accuracy ........................................................................................................... 10
Training, Validation and Test Data ................................................................................................ 10
Test Data and Model Evaluation ................................................................................................... 11
Example 1: Training and Test MSE for Non-Linear Model ............................................................ 11
Example 2: Training and Test MSE for Linear Model .................................................................... 11
Flexibility and Overfitting .............................................................................................................. 12
Bias-Variance Trade-Off ................................................................................................................ 12
Bias-Variance Trade-Off Example 1 (bias-variance.R) ................................................................... 12
Bias-Variance Trade-Off: Example 2, Flexible method .................................................................. 13
Variance of Inflexible Method ....................................................................................................... 13
Example: Bias of Inflexible Method ............................................................................................... 13
Example: Bias of Flexible Method ................................................................................................. 14
Classification Setting ..................................................................................................................... 14
Week 2 – Supervised Learning .............................................................................................................. 15
Classification ...................................................................................................................................... 15
Linear Regression recap ................................................................................................................ 15
Logistic Regression ........................................................................................................................ 15
Maximum Likelihood ......................................................................................................................... 16
Logistic regression with several variables ..................................................................................... 17
Multiclass Logistic Regression ....................................................................................................... 17
1
, Resampling Methods ......................................................................................................................... 17
Recap: Bias-Variance Trade-Off ..................................................................................................... 17
Training Error vs. Test Error........................................................................................................... 18
Validation-set Approach ................................................................................................................ 18
Example validation: automobile data............................................................................................ 18
Test MSE: Automobile data ........................................................................................................... 19
K-fold Cross-Validation .................................................................................................................. 19
Leave-One-Out Cross-Validation (LOOVC) .................................................................................... 20
Cross-Validation for Classification Problems................................................................................. 20
Some remarks on (standard) Cross-Validation.............................................................................. 21
Validation with Time-series Data ...................................................................................................... 21
Basic Supervised Learning ................................................................................................................. 22
Supervised vs unsupervised learning ............................................................................................ 22
Prediction versus Inference ........................................................................................................... 22
Three classes of methods .............................................................................................................. 22
Method 1: Best Subset Selection .................................................................................................. 22
Remarks: Best subset selection ..................................................................................................... 23
Forward / Backward Stepwise Selection ....................................................................................... 23
Shrinkage Methods........................................................................................................................ 24
Ridge Regression ........................................................................................................................... 25
Ridge Regression: Scaling of predictors......................................................................................... 25
Normalization ................................................................................................................................ 25
The Lasso ....................................................................................................................................... 27
Selecting the Tuning Parameter .................................................................................................... 27
Comparing the Lasso and Ridge Regression .................................................................................. 27
Week 3 Tree-based Methods ................................................................................................................ 28
Big Picture...................................................................................................................................... 28
Intuition ......................................................................................................................................... 28
Terminology................................................................................................................................... 29
The tree-building process .............................................................................................................. 29
An intuitive algorithm.................................................................................................................... 30
Find the right tree size by Pruning ................................................................................................ 30
Choosing the best subtree............................................................................................................. 30
Tree algorithm ............................................................................................................................... 30
Classification Trees ........................................................................................................................ 31
Gini Index and Deviance ................................................................................................................ 31
2
, Tree R Code example:.................................................................................................................... 31
Prediction model ........................................................................................................................... 32
Summary of trees .......................................................................................................................... 33
Bagging .............................................................................................................................................. 33
Estimate the MSE .......................................................................................................................... 33
Intuition: Classification .................................................................................................................. 34
R Code: Bagging ............................................................................................................................. 34
Random Forest .............................................................................................................................. 35
R Code: Random Forest ................................................................................................................. 35
Confusion matrix & Random Forest: OOB Test Error .................................................................... 36
Tuning Random Forest .................................................................................................................. 36
R Code: Tuning Random Forest ..................................................................................................... 36
Week 4 – PCA ........................................................................................................................................ 38
Introduction ................................................................................................................................... 38
Principal Component Analysis(PCA) .............................................................................................. 38
Basic Idea ....................................................................................................................................... 38
PCA Details .................................................................................................................................... 39
PCA Notations................................................................................................................................ 40
Further PCs .................................................................................................................................... 40
Proportion Variance Explained ...................................................................................................... 40
Week – Deep Learning .................................................................................................................. 41
Introduction to deep learning ........................................................................................................... 41
What is deep learning? .................................................................................................................. 41
Why deep learning? ...................................................................................................................... 41
Applications of Deep Learning....................................................................................................... 41
Feedforward neural networks ........................................................................................................... 42
Key Building Block: The Perceptron .............................................................................................. 42
The Activation Function................................................................................................................. 42
Purple nodes combine two steps: ................................................................................................. 42
Compute Output Y^ using Neurons Zk .......................................................................................... 43
Building a Single Layer Neural Network in R using Keras (one hidden layer) ............................... 43
Dense Layer ................................................................................................................................... 44
A simple Example of a Feedforward NN........................................................................................ 44
R-Code: A simple Example of a Feedforward NN .......................................................................... 45
A simple Example: Training the NN ............................................................................................... 45
Example: Hitters Data .................................................................................................................... 45
3
, Feedforward NN for Classification Problems ................................................................................ 46
Training Neural Networks ................................................................................................................. 47
Training neural networks: Loss minimization................................................................................ 47
Numerical Optimization: Gradient Decent .................................................................................... 47
Computing Gradients: Backpropagtion ......................................................................................... 47
Loss Function of a Deep Neural Network ...................................................................................... 48
Minimization of the Loss Function ................................................................................................ 48
Choosing the Learning Rate........................................................................................................... 49
Training Neural Nets in Practice: Mini-Batches............................................................................. 49
Mini-Batches.................................................................................................................................. 50
Epochs ........................................................................................................................................... 50
A Feedforward Neural Network in R ............................................................................................. 50
Processing Text Data ..................................................................................................................... 51
Regularization for Neural Networks .................................................................................................. 51
Overfitting and Regularization ...................................................................................................... 51
1) Weight Regularization ........................................................................................................... 52
2) Dropout ................................................................................................................................. 52
3) Early Stopping ........................................................................................................................ 53
Task of improving the Neural Network, how? .............................................................................. 53
Neural Nets in Practice ...................................................................................................................... 54
Multi-Output Neural Nets ............................................................................................................. 54
Choosing the Last-Layer Activation and Loss Function ................................................................. 54
Initializing the Weights .................................................................................................................. 54
Exploding and Vanishing Gradients ............................................................................................... 55
Possible Solutions .......................................................................................................................... 55
Network Architecture in Practice .................................................................................................. 55
Outlook .......................................................................................................................................... 55
4
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller FinanceTillie. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $7.50. You're not tied to anything after your purchase.