100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Analyse 1 - Cours 1 $8.49
In winkelwagen

College aantekeningen

Analyse 1 - Cours 1

 0 keer verkocht
  • Vak
  • Instelling

cours de l analyse 1 qui detaille le cours de mathematique il faut bien lire pour valide le module

Voorbeeld 4 van de 131  pagina's

  • 25 maart 2023
  • 131
  • 2020/2021
  • College aantekeningen
  • Alabkari
  • Alle colleges
avatar-seller
ww
w.
all
oa




1
c
Analyse 1
ad
em
y.c
om

, m
Préambule




o
y.c
L’objectif de ce cours est de faire une transition entre les connaissances en analyse accumulées
au lycée et les bases qui formeront un des piliers dans la formation en analyse mathématique de
la licence. Etant donné que le recrutement en première année d’analyse est assez hétérogène, il
semble assez judicieux de commencer par rappeler les notions élémentaires qui serviront tout au




em
long de ce cours, histoire de ne perdre personne en route.
Quand il sera nécessaire au début de chaque chapitre, nous rappellerons ce qui est censé être connu
en terminal. Nous essaierons également dans la mesure du possible de fournir l’essentiel des ré-
sultats de chaque chapitre sur une page, histoire de synthétiser les connaissances à bien maîtriser
pour passer au chapitre suivant.
Nous fournirons autant d’exemples et de figures nécessaires afin d’obtenir une meilleure compré-
hension du cours. Nous essaierons également de souligner les pièges dans lesquels chacun peut se
ad
fourvoyer soit par inattention, soit par une mauvaise maîtrise du cours.
c
oa
all
w.
ww




2

, o m
y.c
Table des matières




em
1 Les réels 7
1.1 Un peu d’histoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Introduction aux nombres réels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Quelques règles de calcul . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Intervalles de R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Voisinage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
ad
1.5 Bornes supérieures, inférieures, maximum et minimum . . . . . . . . . . . . . . . 16
1.6 Valeur absolue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Partie entière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Les fonctions d’une variable réelle 21
c
2.1 Notions de bases sur les fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Quelques propriétés des fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . 26
oa

2.2.1 Les opérations algébriques . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 La restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Fonctions définies par morceaux . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Fonctions majorées, minorées, bornées . . . . . . . . . . . . . . . . . . . 27
2.3 La composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
all


2.3.1 Monotonie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Parité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Fonctions périodiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Injectivité, surjectivité, bijectivité . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
w.




3 Limites d’une fonction 41
3.1 Limites finie d’une fonction en un point . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Limites infinie d’une fonction en un point . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Limites à droite, limite à gauche . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Limites d’une fonction en +∞ ou −∞ . . . . . . . . . . . . . . . . . . . . . . . . 46
ww




3.5 Propriétés des limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 Unicité de la limite, majoration, minoration . . . . . . . . . . . . . . . . . 47
3.5.2 Limites et comparaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Opérations algébriques sur les limites . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.1 Limite d’une somme de fonctions . . . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Limite d’un produit de fonctions . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.3 Limite d’un quotient de fonctions . . . . . . . . . . . . . . . . . . . . . . 51
3

, m
TABLE DES MATIÈRES TABLE DES MATIÈRES



3.7 Autres propriétés sur les limites . . . . . . . . . . . . . . . . . . . . . . . . . . . 51




o
3.7.1 Limite et composée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7.2 Limite et monotonie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52




y.c
3.7.3 Critère de Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Quelques fonctions usuelles 55
4.1 Fonction constante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Fonction identité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Fonction valeur absolue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57




em
4.4 Fonction partie entière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Fonction puissances entières n ∈ N . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Fonction polynôme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7 Fonction racine n-ième, puissance rationnelle . . . . . . . . . . . . . . . . . . . . 61
4.8 Fonction homographique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.9 Fonction logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.10 Fonction exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
ad
4.11 Fonctions circulaires (ou trigonométriques) . . . . . . . . . . . . .
4.11.1 Fonction sinus . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
68
68
4.11.2 Fonction cosinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.11.3 Fonction tangente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.11.4 Fonction cotangente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
c
4.12 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.12.1 Fonction cosinus hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . 71
oa

4.12.2 Fonction sinus hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.12.3 Fonction tangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . . 73
4.12.4 Fonction cotangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . 73
4.13 Fonctions réciproques usuelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.13.1 Réciproque d’une fonction homographique . . . . . . . . . . . . . . . . . 75
all


4.13.2 Réciproque de la fonction sinus : la fonction arc sinus . . . . . . . . . . . 76
4.13.3 Réciproque de la fonction cosinus : la fonction arc cosinus . . . . . . . . . 77
4.13.4 Réciproque de la fonction tangente : la fonction arc tangente . . . . . . . . 78
4.13.5 Propriétés des fonctions arc sinus, arc cosinus et arc tangente . . . . . . . . 80
4.13.6 Equations du type sin(x) = a, cos(x) = a et tan(x) = a . . . . . . . . . . 80
w.




4.13.7 Réciproque des fonctions sh et th . . . . . . . . . . . . . . . . . . . . . . 81

5 Continuité des fonctions 83
5.1 Caractérisation de Weierstrass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Continuité, opérations algébriques et composition . . . . . . . . . . . . . . . . . . 85
ww




5.3 Théorèmes sur la continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Continuité, monotonie, injectivité et bijectivité . . . . . . . . . . . . . . . . . . . . 88

6 Dérivée d’une fonction 91
6.1 Définition de la dérivabilité de f . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Dérivabilité et continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Dérivabilité, opérations algébriques et composition . . . . . . . . . . . . . . . . . 94
4

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper ayoubaithnina. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor $8.49. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 72056 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis

Laatst bekeken door jou


$8.49
  • (0)
In winkelwagen
Toegevoegd