100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Analyse 1 - Cours 1 $8.49
Add to cart

Class notes

Analyse 1 - Cours 1

 3 views  0 purchase
  • Course
  • Institution

cours de l analyse 1 qui detaille le cours de mathematique il faut bien lire pour valide le module

Preview 4 out of 131  pages

  • March 25, 2023
  • 131
  • 2020/2021
  • Class notes
  • Alabkari
  • All classes
avatar-seller
ww
w.
all
oa




1
c
Analyse 1
ad
em
y.c
om

, m
Préambule




o
y.c
L’objectif de ce cours est de faire une transition entre les connaissances en analyse accumulées
au lycée et les bases qui formeront un des piliers dans la formation en analyse mathématique de
la licence. Etant donné que le recrutement en première année d’analyse est assez hétérogène, il
semble assez judicieux de commencer par rappeler les notions élémentaires qui serviront tout au




em
long de ce cours, histoire de ne perdre personne en route.
Quand il sera nécessaire au début de chaque chapitre, nous rappellerons ce qui est censé être connu
en terminal. Nous essaierons également dans la mesure du possible de fournir l’essentiel des ré-
sultats de chaque chapitre sur une page, histoire de synthétiser les connaissances à bien maîtriser
pour passer au chapitre suivant.
Nous fournirons autant d’exemples et de figures nécessaires afin d’obtenir une meilleure compré-
hension du cours. Nous essaierons également de souligner les pièges dans lesquels chacun peut se
ad
fourvoyer soit par inattention, soit par une mauvaise maîtrise du cours.
c
oa
all
w.
ww




2

, o m
y.c
Table des matières




em
1 Les réels 7
1.1 Un peu d’histoire . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.2 Introduction aux nombres réels . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
1.2.1 Quelques règles de calcul . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
1.3 Intervalles de R . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Voisinage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
ad
1.5 Bornes supérieures, inférieures, maximum et minimum . . . . . . . . . . . . . . . 16
1.6 Valeur absolue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 Partie entière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2 Les fonctions d’une variable réelle 21
c
2.1 Notions de bases sur les fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Quelques propriétés des fonctions . . . . . . . . . . . . . . . . . . . . . . . . . . 26
oa

2.2.1 Les opérations algébriques . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.2 La restriction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
2.2.3 Fonctions définies par morceaux . . . . . . . . . . . . . . . . . . . . . . . 27
2.2.4 Fonctions majorées, minorées, bornées . . . . . . . . . . . . . . . . . . . 27
2.3 La composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
all


2.3.1 Monotonie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
2.3.2 Parité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.3 Fonctions périodiques . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.4 Injectivité, surjectivité, bijectivité . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
w.




3 Limites d’une fonction 41
3.1 Limites finie d’une fonction en un point . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Limites infinie d’une fonction en un point . . . . . . . . . . . . . . . . . . . . . . 43
3.3 Limites à droite, limite à gauche . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.4 Limites d’une fonction en +∞ ou −∞ . . . . . . . . . . . . . . . . . . . . . . . . 46
ww




3.5 Propriétés des limites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.5.1 Unicité de la limite, majoration, minoration . . . . . . . . . . . . . . . . . 47
3.5.2 Limites et comparaison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.6 Opérations algébriques sur les limites . . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.1 Limite d’une somme de fonctions . . . . . . . . . . . . . . . . . . . . . . 50
3.6.2 Limite d’un produit de fonctions . . . . . . . . . . . . . . . . . . . . . . . 50
3.6.3 Limite d’un quotient de fonctions . . . . . . . . . . . . . . . . . . . . . . 51
3

, m
TABLE DES MATIÈRES TABLE DES MATIÈRES



3.7 Autres propriétés sur les limites . . . . . . . . . . . . . . . . . . . . . . . . . . . 51




o
3.7.1 Limite et composée . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.7.2 Limite et monotonie . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52




y.c
3.7.3 Critère de Cauchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4 Quelques fonctions usuelles 55
4.1 Fonction constante . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.2 Fonction identité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
4.3 Fonction valeur absolue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57




em
4.4 Fonction partie entière . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
4.5 Fonction puissances entières n ∈ N . . . . . . . . . . . . . . . . . . . . . . . . . 59
4.6 Fonction polynôme . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.7 Fonction racine n-ième, puissance rationnelle . . . . . . . . . . . . . . . . . . . . 61
4.8 Fonction homographique . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.9 Fonction logarithme népérien . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.10 Fonction exponentielle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
ad
4.11 Fonctions circulaires (ou trigonométriques) . . . . . . . . . . . . .
4.11.1 Fonction sinus . . . . . . . . . . . . . . . . . . . . . . . .
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
68
68
4.11.2 Fonction cosinus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
4.11.3 Fonction tangente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
4.11.4 Fonction cotangente . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
c
4.12 Fonctions hyperboliques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
4.12.1 Fonction cosinus hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . 71
oa

4.12.2 Fonction sinus hyperbolique . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.12.3 Fonction tangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . . 73
4.12.4 Fonction cotangente hyperbolique . . . . . . . . . . . . . . . . . . . . . . 73
4.13 Fonctions réciproques usuelles . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
4.13.1 Réciproque d’une fonction homographique . . . . . . . . . . . . . . . . . 75
all


4.13.2 Réciproque de la fonction sinus : la fonction arc sinus . . . . . . . . . . . 76
4.13.3 Réciproque de la fonction cosinus : la fonction arc cosinus . . . . . . . . . 77
4.13.4 Réciproque de la fonction tangente : la fonction arc tangente . . . . . . . . 78
4.13.5 Propriétés des fonctions arc sinus, arc cosinus et arc tangente . . . . . . . . 80
4.13.6 Equations du type sin(x) = a, cos(x) = a et tan(x) = a . . . . . . . . . . 80
w.




4.13.7 Réciproque des fonctions sh et th . . . . . . . . . . . . . . . . . . . . . . 81

5 Continuité des fonctions 83
5.1 Caractérisation de Weierstrass . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
5.2 Continuité, opérations algébriques et composition . . . . . . . . . . . . . . . . . . 85
ww




5.3 Théorèmes sur la continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
5.4 Continuité, monotonie, injectivité et bijectivité . . . . . . . . . . . . . . . . . . . . 88

6 Dérivée d’une fonction 91
6.1 Définition de la dérivabilité de f . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.2 Dérivabilité et continuité . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.3 Dérivabilité, opérations algébriques et composition . . . . . . . . . . . . . . . . . 94
4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller ayoubaithnina. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $8.49. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

56326 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$8.49
  • (0)
Add to cart
Added