Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien 4.2 TrustPilot
logo-home
Resume

Samenvatting Onderzoeksmethoden 3: Verdieping kwantitatieve technieken

Note
-
Vendu
-
Pages
9
Publié le
03-04-2023
Écrit en
2022/2023

In deze samenvatting zijn de belangrijkste verdiepende kwantitatieve toetsen behandeld en volgens de theorie uitgelegd. Het vat ook Field samen, in beter te begrijpen punten. logistische regressie, ANOVA, ANCOVA, herhaalde metingen ANOVA, tweeweg ANOVA en de Chi-kwadraten toets worden behandeld.

Montrer plus Lire moins
Établissement
Cours









Oups ! Impossible de charger votre document. Réessayez ou contactez le support.

Livre connecté

École, étude et sujet

Établissement
Cours
Cours

Infos sur le Document

Livre entier ?
Non
Quels chapitres sont résumés ?
9 tm 15
Publié le
3 avril 2023
Nombre de pages
9
Écrit en
2022/2023
Type
Resume

Sujets

Aperçu du contenu

Voorbereiding



Lineaire regressie
Kijkt naar het effect van X op Y
Simpele regressie (met 1 onafhankelijke X)
Y = a + bx
→ ‘a’= constant, de waarde van x = 0. ← daar snijdt de lijn de y-as als eerst (begin)
→ ‘b’ = regressiecoëfficient, voor elke eenheid toename in x, neemt Y met die waarde
toe / af.

- Wanneer je SSm deelt door SSt, krijg je de R2. De R Square laat zien hoeveel
variantie er verklaard wordt uit je model
Laat dus het deel zien van je afhankelijke (Y) variabele dat verkaard wordt
adhv je model (= pearsons r in kwadraat)
● Vermedigvuldig R2 om percentage te krijgen.
- F laat zien hoe het gehele model een significante verbetering is tov het
gemiddelde → moet daarom ook significant zijn.

Assumpties
- Outliers: schiet er geen data uit je onderzoek erg uit of niet.
- onafhankelijke error: voor elke twee observaties zouden de residuen niet
moeten correleren
- Homoscedasticiteit: punten niet te ver uit elkaar op elk niveau → op elk
niveau van de predictor moet de variantie vd residuen enigszins constant zijn
● wanneer punten niet goed verdeeld zijn / een patroon hebben => wss
sprake van homogeniteit van varianties.
- Predictoren correleren niet met externe waardes ( externe variabelen zijn niet
mee genomen in t model, maar beinvloeden wel de outcome variabele).
- Multicollinieariteit = waneer er een sterke correlatie is tussen twee of meer
predictoren. Als dit zich voordoet ontstaan 3 problemen:
1) onbetrouwbare b coefficienten
2) limiteert de grootte van de R (de maat voor correlatie tussen voorspelde
en de uitkomst van de geobserveerde waarden)
3) maakt t lastig om individueel belang predictors te herkennen bij
multicollinieariteit
→ kan met VIF controleren

, Cook’s Distance is een maat die de overall invloed van een case op het model laat
zien (deze niet hoger dan 1 zijn)


ANOVA

wat Gemiddelden van meer dan 2 groepen met elkaar vergelijken →
Toetst of de gemiddelde op een (interval of ratio) afhankelijke
variabele bij meer dan twee groepen verschillen op 1 of meer
categorische onafhankelijke variabelen.
Dus: Kijken of er wel verschil zit tussen y controle & y andere groep

Waarom Gebruik je wanneer:
- categorische onafhankelijke variabele met meerdere niveau’s
- wanneer je nog niet echt weet welke groepen je wil vergelijken,
op deze manier zie je ze allemaal = post hoc
- de varianties voor elke groep zijn gelijk (homoscedasticiteit)

Post hoc/ Tukey = Laat je per paar zien waar de verschillen tussen de
groepen bestaat.
- Alleen doen wanneer omnibus toets significant is & er geen
verwachting is
- Posthoc testen bestaan uit pairwise vergelijkingen ontworpen om
verschillende combinaties van je groepen te vergelijken
(hierdoor wordt je error gecontroleerd)
Hoe rapporteren we Post hoc → de significantie bij de F waarde (F(df,
error) = Fwaarde, p = …) waarbij de Post hoc significantie verschillen
toont tussen groep A & groep B

Belangrijkste Bij ANOVA gebruik je de F-toets als regressie=
variantie model → voorspelling (= groepsgemiddelde) tov algemeen gem.
F = —-----------------
variantie residuen → datapunten tov voorspellingen

Dus: F = verschillen tussen groepen/ verschillen binnen groepen
- tussen = between & staat onder mean square → gemiddelde hoeveel-
heid verklaarde variantie tussen de groepen
- binnen = within & staat onder mean square → gemiddelde hoeveel-
heid verklaarde variantie binnen de groepen

Omnisbustoets → verteld je of er verschillen zijn tussen groepen maar niet
tussen welke groepen..
- Hierdoor = H0 = y1 = y2 = y3 etc.. (of te wel H0 is alles is gelijk)
- H1 = tenmisnte 2 groepen verschillen (effect)

● Post hoc corrigieert beter op familywise error (dan t-toets)
● Als H0 bij ANOVA wordt aangenomen/ waar is, betkend dit dat de
groepsgemiddelden gelijk zijn aan het algemeen gemiddelen
$9.46
Accéder à l'intégralité du document:

Garantie de satisfaction à 100%
Disponible immédiatement après paiement
En ligne et en PDF
Tu n'es attaché à rien

Faites connaissance avec le vendeur
Seller avatar
kyaralambeck1

Faites connaissance avec le vendeur

Seller avatar
kyaralambeck1 Universiteit van Amsterdam
S'abonner Vous devez être connecté afin de pouvoir suivre les étudiants ou les formations
Vendu
12
Membre depuis
4 année
Nombre de followers
11
Documents
13
Dernière vente
1 année de cela
KYLA

0.0

0 revues

5
0
4
0
3
0
2
0
1
0

Récemment consulté par vous

Pourquoi les étudiants choisissent Stuvia

Créé par d'autres étudiants, vérifié par les avis

Une qualité sur laquelle compter : rédigé par des étudiants qui ont réussi et évalué par d'autres qui ont utilisé ce document.

Le document ne convient pas ? Choisis un autre document

Aucun souci ! Tu peux sélectionner directement un autre document qui correspond mieux à ce que tu cherches.

Paye comme tu veux, apprends aussitôt

Aucun abonnement, aucun engagement. Paye selon tes habitudes par carte de crédit et télécharge ton document PDF instantanément.

Student with book image

“Acheté, téléchargé et réussi. C'est aussi simple que ça.”

Alisha Student

Foire aux questions