Fundamenten van de wiskunde - uitwerkingen huiswerk week 2
0 purchase
Course
Fundamenten van de Wiskunde
Institution
Universiteit Utrecht (UU)
Book
Proofs and Fundamentals
Ook als de inleveropgave veranderd is, is dit natuurlijk nog steeds een heel goede oefening om de stof te begrijpen! Ik heb zelf erg genoten van het vak Fundamenten van de Wiskunde.
Opgave 2.2.3
(1):
Gegeven: n is een geheel getal en n is even.
Te bewijzen: 3n is even.
Bewijs. Laat n een geheel getal zijn en laat n even zijn. Aangezien n even is dan is n van
de vorm n = 2k met k een geheel getal. Dan geldt 3n = 3(2k) = 2(3k) en dus is 3n ook een
geheel veelvoud van 2 en daarmee even.
(2):
Gegeven: n is een geheel getal en n is oneven.
Te bewijzen: 3n is oneven.
Bewijs. Laat n een geheel getal zijn en laat n oneven zijn. Als n oneven is dan is n van de
vorm n = 2k + 1 met k een geheel getal. Dan geldt 3n = 3(2k + 1) = 6k + 3 = 2(3k + 1) + 1
en dus is 3n een even getal plus 1 en dus oneven.
Opgave 2.2.7
Gegeven: getallen a, b, c en d zijn geheel met a|b en c|d.
Te bewijzen: ac|bd.
Bewijs. Laat a, b, c en d gehele getallen zijn met a|b en c|d. Dan geldt ax = b en cy = d voor
gehele getallen x en y. Daarmee geldt (ac) · (xy) = ax · cy = bd en aangezien (xy) geheel is
geldt ac|bd.
1
, Opgave 2.3.4
Gegeven: rationaal getal q ongelijk aan 0, en x een irrationaal getal.
Te bewijzen: het product van q en x is irrationaal.
Bewijs. Laat q een rationaal getal zijn en x een irrationaal getal zijn.
We zullen een bewijs uit het ongerijmde leveren.
Aangezien q een rationaal getal is, geldt q = ab voor gehele getallen a en b met b 6= 0. Ook
geldt a 6= 0 aangezien q ongelijk aan 0 is.
Neem voor een tegenstelling aan dat qx rationaal is en dus qx = dc voor gehele getallen
c en d met d 6= 0.
Dan geldt qx = ab · x = dc dus x = adbc
waarbij a, b, c en d gehele getallen zijn en dus zijn bc en
ad ook geheel, verder geldt a, d 6= 0 en dus ad 6= 0, hiermee kunnen we concluderen dat x een
rationaal getal is.
Dit is in tegenspraak met het feit dat x irrationaal is. Hiermee moet de aanname dat qx
rationaal is, incorrect zijn. We kunnen concluderen dat qx irrationaal is.
Opgave 2.3.6
Gegeven: c is een geheel getal met c ≥ 2, en c is geen priemgetal.
√
Te bewijzen: er bestaat een geheel getal b zodat b ≥ 2, zodat b|c en zodat b ≤ c.
Bewijs. Laat c een geheel getal zijn zodanig dat c ≥ 2, en c geen priemgetal is.
Aangezien c geen priemgetal is heeft c een positieve deler x ongelijk aan 1 en ongelijk aan c.
Dan nemen we het gehele positieve getal y = xc zodat x · y = c en dus ook y|c.
Aangezien x 6= 1 en x 6= c geldt ook dat y 6= 1 en y 6= c. Dan moet gelden x ≥ 2 en y ≥ 2.
√ √ √ √ √
Ofwel x ≤ c, ofwel y ≤ c, want als x, y > c dan geldt dat c = xy > c · c = c wat
√
een tegenspraak is. De waarde van x, y die kleiner of gelijk is aan c voldoet dus aan de
voorwaarden van b.
2
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller marjavdwind. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $5.35. You're not tied to anything after your purchase.