Fundamenten van de wiskunde - uitwerkingen huiswerk week 4
9 views 0 purchase
Course
Fundamenten van de Wiskunde
Institution
Universiteit Utrecht (UU)
Book
Proofs and Fundamentals
Ook als de inleveropgave veranderd is, is dit natuurlijk nog steeds een heel goede oefening om de stof te begrijpen! Ik heb zelf erg genoten van het vak Fundamenten van de Wiskunde.
Opgave 4.1.1:
(1), (4) en (6) zijn functies. De overige deelverzamelingen F ⊆ A × B hebben elk een element
a ∈ A in het domein waarvoor er niet exact één paar (a, b) ∈ F bestaat.
Opgave 4.1.3:
Diagrammen (i) en (iv) representeren functies. In de overige diagrammen is niet elk element
uit het domein gekoppeld aan exact één element uit het codomein.
Opgave 4.2.3:
(1): f (T ) = [0, 4], dan f −1 (T ) = [−2, 0] met f (f −1 (T )) = f ([−2, 0]) = [0, 1]
en f −1 (f (T )) = f −1 ([0, 4]) = [−3, 1]. √ √
(2): f (T ) = [0, 16], dan f −1 (T ) = [−1, 2 − 1] met f (f −1 (T )) = f ([−1, 2 − 1]) = [0, 2]
en f −1 (f (T )) = f −1 ([0, 16]) = [−5, 3].
(3): f (T ) = {2, 3}, dan f −1 (T ) = (1, 2] met f (f −1 (T )) = f ((1, 2]) = {2}
en f −1 (f (T )) = f −1 ({2, 3}) = (1, 3].
(4): f (T ) = {0, 1, 2, 5, 6}, dan f −1 (T ) = [0, 3) ∪ [6, 7)
met f (f −1 (T )) = f ([0, 3) ∪ [6, 7)) = {0, 1, 2, 6}
en f −1 (f (T )) = f −1 ({0, 1, 2, 5, 6}) = [0, 3) ∪ [5, 7).
Opgave 4.2.13:
We merken op dat de oneven opgaven zeer soortgelijk zijn aan de even opgaven, de even
opgaven zijn hieronder uitgewerkt.
Gegeven: verzamelingen A en B met deelverzamelingen X ⊆ A en Y ⊆ B en functie
f : A → B.
(2):
Te bewijzen: f (f −1 (Y )) ⊆ Y .
Bewijs. Volgens Deelstelling 3 van Stelling 4.2.4 geldt dat f (f −1 (Y )) ⊆ Y als en alleen als
f −1 (Y ) ⊆ f −1 (Y ), dit laatste is duidelijk waar en daarom geldt inderdaad f (f −1 (Y )) ⊆ Y .
1
, (4):
Te bewijzen: Y = f (f −1 (Y )) als en alleen als Y = f (W ) voor een W ⊆ A.
Bewijs. ” =⇒ ”. Stel Y = f (f −1 (Y )). Dan geldt voor W = f −1 (Y ) ⊆ A dat Y = f (W ).
” ⇐= ”. Stel Y = f (W ) voor een W ⊆ A. Dan geldt f (W ) ⊆ Y . Uit Deelstelling 3
van Stelling 4.2.4 volgt dat W ⊆ f −1 (Y ). Vervolgens geeft Deelstelling 4 van Stelling 4.2.4
f (W ) ⊆ f (f −1 (Y )). Aangezien f (W ) = Y volgt dat Y ⊆ f (f −1 (Y )). Volgens de definitie
van het inverse beeld geldt f −1 (Y ) ⊆ A en dus f (f −1 (Y )) ⊆ Y . Uit deze inclusies volgt dat
Y = f (f −1 (Y )).
(6):
Te bewijzen: f −1 (f (f −1 (Y ))) = f −1 (Y ).
Bewijs. ”⊆”. Volgens de redenatie in deelopgave (4) weten we dat f (f −1 (Y )) ⊆ Y en dus
volgt uit Deelstelling 5 van Stelling 4.2.4 dat f −1 (f (f −1 (Y ))) ⊆ f −1 (Y ).
”⊇”. Aangezien f (f −1 (Y )) ⊆ f (f −1 (Y )) geeft Deelstelling 3 van Stelling 4.2.4 dat
f −1 (Y ) ⊆ f −1 (f (f −1 (Y ))).
Omdat zowel f −1 (f (f −1 (Y ))) ⊆ f −1 (Y ) als f −1 (Y ) ⊆ f −1 (f (f −1 (Y ))) geldt moet gelden dat
f −1 (f (f −1 (Y ))) = f −1 (Y ).
Opgave 4.3.4:
(1):
Laat h : R → R gedefinieerd zijn door h(x) = x2 . Vanwege vergelijking f (0) = 0 6= 1 = f (1)
is deze functie is niet constant.
Laat k : R → R gedefinieerd zijn door
(
1, als x ≥ 0,
f (x) =
x, als x < 0.
Functie k is niet constant (f (−1) = −1 6= 1 = f (0)).
Omdat voor iedere x ∈ R er geldt dat h(x) ≥ 0 moet gelden dat (k ◦ h)(x) = 1 en dus is k ◦ h
een constante functie.
(2):
Laat s : R → R gedefinieerd zijn door s(x) = x/2. Omdat s(2) = 1 6= 2 geldt dat s 6= 1R .
Laat t : R → R gedefinieerd zijn door s(x) = 2x. Omdat t(1) = 2 6= 1 geldt dat t 6= 1R .
We merken op dat voor elke x ∈ R er geldt dat (s ◦ t)(x) = s(2x) = x en daarom (s ◦ t) = 1R .
2
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller marjavdwind. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $5.38. You're not tied to anything after your purchase.