100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Wiskunde in de praktijk - Kerninzichten, ISBN: 9789001994440 Rekenen $5.91
Add to cart

Summary

Samenvatting Wiskunde in de praktijk - Kerninzichten, ISBN: 9789001994440 Rekenen

 24 views  0 purchase
  • Course
  • Institution
  • Book

Samenvatting van het boek Wiskunde in de praktijk: Kerninzichten (3e druk). In de samenvatting heb ik mij beperkt tot de belangrijkste informatie. Daarnaast heb ik afbeeldingen gebruikt om de theorie inzichtelijk te maken.

Preview 2 out of 16  pages

  • No
  • Hoofdstuk 5 t/m 8 en 14
  • April 28, 2023
  • 16
  • 2022/2023
  • Summary
avatar-seller
Hoofdstuk 5 – Verhoudingen
Een goed inzicht in verhoudingen vormt de basis voor het verwerven van kennis, inzicht en
vaardigheid op talrijke andere gebieden, zoals breuken, kommagetallen, procenten, meten,
meetkunde en grafieken.

5.1 – Vergelijking tussen grootheden
Het inspelen op activiteiten waarmee leerlingen bezig zijn, heeft een motiverende werking
(grootheid en verhoudingen). Bij verhoudingen zijn allerlei wiskundige zaken verweven namelijk,
schaal, meetkunde, schatten en referentiematen.
 Met verhoudingen kun je grootheden vergelijken.
Ervaringen van kinderen die ze hebben bij meten en meetkunde leggen de basis voor het denken in
verhoudingen. Door te redeneren worden kinderen bewust van naar een verhouding te kijken.

Evenredig verband = het verband tussen twee grootheden waarbij de verhouding of het product
constant is.

Gelijkvormig 
(Vergrotingsfactor)



Waaraan herken je het kerninzicht vergelijking tussen grootheden bij leerlingen? Als een leerling:
 Juiste uitspraken doet die verhoudingen aangeven
 Bij het tekenen of maken van iets goed oplet op de onderlinge verhoudingen
 Wanverhoudingen onder woorden brengen
 Kan verwoorden dat twee figuren wel of niet gelijkvormig zijn (vergrotingsfactor)
 Weet dat je uit een recept voor 4 een recept voor 2 kan halen
 Kan een mengsituatie hanteren: in een klein glas ranja zijn twee lepels siroop lekker en in een groot glas
ranja zijn vier lepels siroop lekker.
 Prijzen of grootheden verhoudingsgewijs vergelijken : twee broodjes is goedkoper dan één grote.
 Eenvoudige schaalberekeningen maken.

5.2 – Gelijkwaardige getallenparen
Een getalsverhouding staat voor een eindeloze reeks van gelijkwaardige getallenparen.
Verhoudingen lokken oplossingen uit op verschillende niveaus. De verhoudingstabel heeft een
belangrijke functie.
 De dubbele getallenlijn kan goed dienen bij snelheidsproblemen. Anders dan bij de
verhoudingstabel zijn hier de onderlinge afstanden zichtbaar gemaakt.
 Een strook kan ondersteunen bij een percentage opgave.

1. Het systematisch noteren van getallenparen kan helpen bij de opgave begrijpen en oplossen
2. Een lijst maken met getallenparen. De leerkracht stimuleert een verhoudingstabel.

Regel van drieën: 100% is 15 snoepjes, hoeveel procent zijn 10 snoepjes? 100x10:15 = 66%
Relatief begrip:
 De verhouding vertegenwoordigt alle getallenparen die daaraan gelijkwaardig zijn
 Een gemiddelde betekent dat je niet continu die snelheid bijv. fietst.

Voor de evenredigheden wordt in de bovenbouw veel gebruik gemaakt bij het redeneren en rekenen
met verhoudingen door een verhoudingstabel of dubbele getallenlijn. Een verhoudingstabel helpt bij
het redeneren en rekenen met verhoudingen. Het is belangrijk dat kinderen zelf opzoek gaan naar

1

, gelijke verhoudingsgetallen. Inzicht beklijft vooral als kinderen begrippen zelf construeren. Een
verhoudingstabel kan worden gebruikt als denk- en rekenmodel (kladblad).

Verhoudingsgewijs = getallenparen moeten telkens eenzelfde veelvoud verschillen.

Externe verhoudingen = verschillende grootheden. Bijv. km en tijd.
Interne verhoudingen = een grootheid. Bijv. lengte.

Een schaalverhouding wordt vaak aangeduid met een schaallijn, een soort dubbele getallenlijn.




Waar herken je het kerninzicht verhouding als relatief begrip bij leerlingen? Als een leerling:
 Door blijft zoeken naar gelijkwaardige getallenparen van een verhouding
 Weet en kan verwoorden dat je een evenredigheid op verschillende manieren kunt
benoemen of schrijven
 Een relatienetwerk is opgebouwd uit overeenkomstige getalrelaties
 Een gemiddelde kan staan voor oneindig veel situaties
 In staat is een verhoudingscontext te vertalen naar een verhoudingstabel of dubbele
getallenlijn. De verhoudingstabel op een correcte wijze gebruiken als denk- en rekenmodel
 Verhoudingsgewijs kan vergelijken door te redeneren aan de hand van een model
 De vierde evenredige kan toepassen met de regel van drieën
 In staat is niet-evenredige verbanden toe te passen (vergrotingsfactor).

5.3 – Leerlijn verhoudingen
In de onderbouw van de basisschool wordt het fundament gelegd voor het denken en redeneren
over verhoudingen.
Zeker in de beginfase is de juiste wiskundetaal (verhoudingstaal) van belang voor de ontwikkeling
van het verhoudingsdenken. Vanaf groep 7 komt de formele verhoudingstaal. Twee staat tot drie is
als vier staat tot zes. Hierdoor leren lln. steeds beter te redeneren met verhoudingen. In de
bovenbouw wordt de verhoudingstabel ingezet als ondersteunend model. Er wordt nu ook gerekend
met kommagetallen, breuken en procenten.

Het vergelijken van prijzen is een betekenisvolle context op verschillende niveaus. Als de getallen
groter of complexer worden, ontstaat de behoefte van overzichtelijke rijen van verhoudingsgetallen.
De leerkracht kan door interactie de overstap maken naar de verhoudingstabel of de dubbele
getallenlijn. Overigens zijn de lln. al bekend met verhoudingstabellen.
- In een verhoudingstabel kun je flexibel rekenen.
- Elke tussenstap heeft een betekenis, omdat elke stap wordt ondersteund door de context.
- Ze kiezen zelf welke getallen. Ze werken op hun eigen niveau (differentiatieaspect).
- Er wordt al snel gezorgd naar de korte manier (niveauverhoging).
- Ook met kommagetallen en procenten zijn er goede uitkomsten.
- De verhoudingstabel nodigt het handig rekenen uit.
- Niet alle leerlingen zijn tegelijk toe aan rekenen op formeel niveau. De leerkracht zal steeds
flexibel moeten wisselen tussen het concreet niveau, het modelondersteunend niveau en
het formeel niveau. De overgang naar het formele niveau wordt gemaakt door de
verhoudingstabel.




2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller LLoes. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.91. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

52510 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.91
  • (0)
Add to cart
Added