100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
MAT3700 EXAM PACK 2023 22nd May 2023 $6.29
In winkelwagen

Tentamen (uitwerkingen)

MAT3700 EXAM PACK 2023 22nd May 2023

 0 keer verkocht
  • Vak
  • Instelling

Solve the following differential equations: 1.1   x x dy ydx ln   0. (4) 1.2 cos sin Hint: Solve as a linear equation.   1   dy x yx dx (8) 1.3        2 2 Hint: Let dy x xy y vx dx

Voorbeeld 2 van de 11  pagina's

  • 22 mei 2023
  • 11
  • 2022/2023
  • Tentamen (uitwerkingen)
  • Vragen en antwoorden
  • Onbekend
avatar-seller
UNIVERSITY EXAMINATIONS




September-December 2021

APM3700

Differential Equations (Engineering)

Duration: 3 hours Marks: 100
Examiners:
First: Ms LE Greyling
Second: Mr S Blose
External: Dr JN Mwambakana
Use of a non-programmable pocket calculator is permissible.

This is a closed book examination and will be IRIS invigilated.
This online paper is the property of UNISA and may not be distributed electronically.

This examination question paper consists of 3 pages including this cover page plus
Formulae sheets (pages 4 to 8) plus
A table of integrals (pages 9 and 10) plus
A table of Laplace transforms (page 11).

Examination rules:
1. Students must upload their answer scripts in a single PDF file (answer scripts must not be password
protected or uploaded as “read only” files).
2. NO emailed scripts will be accepted.
3. Students are advised to preview submissions (answer scripts) to ensure legibility and that the correct
answer script file has uploaded.
4. Students are permitted to resubmit their answer scripts should their initial submission be unsatisfactory.
5. Incorrect file format and uncollated answer scripts will not be considered.
6. Incorrect answer scripts and/or submissions made on unofficial examinations platforms will not be marked
and no opportunity will be granted for resubmission.
7. Mark awarded for incomplete submission will be the student’s final mark. No opportunity for resubmission
will be granted.
8. Mark awarded for illegible scanned submission will be the student’s final mark. No opportunity for
resubmission will be granted.
9. Submissions will only be accepted from registered student accounts.
10. Students who have not utilised invigilation or proctoring tools will be subjected to disciplinary processes.
11. Students suspected of dishonest conduct during the examinations will be subjected to disciplinary
processes. UNISA has a zero tolerance for plagiarism and/or any other forms of academic dishonesty.
12. Students are provided one hour to submit their answer scripts after the official examination time.
Submissions made after the official examination time will be rejected by the examination regulations and
will not be marked.
13. Students experiencing network or load shedding challenges are advised to apply together with supporting
evidence for an Aegrotat within 3 days of the examination session.
14. Students experiencing technical challenges, contact the SCSC 080 000 1870 or email
or refer to Get-Help for the list of additional contact numbers. Communication
received from your myLife account will be considered. Include screenshots of your problem.

, -2- APM3700
September-December 2021

QUESTION 1
Solve the following differential equations:
1.1  x ln x  dy  ydx  0 . (4)
dy
1.2 cos x  y sin x  1 Hint: Solve as a linear equation  . (8)
dx
1.3  x 2  xy
dy
dx
  xy  y 2 Hint: Let y  vx  . (8)
[20]

QUESTION 2
Find the general solution of the following differential equation using the method of
d 2y dy
undetermined coefficients: 2
2  y  e 2 x . (8)
dx dx
[8]

QUESTION 3
Find the general solution of the following differential equations using D-operator methods:

3.1  
D D 2  1 y  2 sinh x . (7)

3.2 D 2

 2D  1 y  xe x  7 x  2 (9)
[16]

QUESTION 4
Solve for only x by using D-operator methods in the following set of simultaneous
equations:
D  1 y 
2
5Dx  t

 
2Dy  D 2  4 x  2 . (8)
[8]

QUESTION 5
Determine the following:

5.1 
L sin2 t .  (4)

 3  s  1 
5.2 L1  2 . (2)
 s  2s  10 
[6]
[TURN OVER]

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper Hayleymeghan21. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor $6.29. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 67068 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis

Laatst bekeken door jou


$6.29
  • (0)
In winkelwagen
Toegevoegd