100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting Data Science 2 P4 $5.93   Add to cart

Summary

Samenvatting Data Science 2 P4

 9 views  1 purchase
  • Course
  • Institution

Samenvatting data science 2 theorie van periode 4 aan Karel de Grote Hogeschool

Preview 4 out of 51  pages

  • June 2, 2023
  • 51
  • 2022/2023
  • Summary
avatar-seller
DS 2
P4




KDG | 2022-23




1

, Inhoudsopgave
Inhoudsopgave 2
1. Discriminant analyse 4
1.1 Begrippen 4
1.2 Inleiding 4
1.3 Karakteristieken 5
1.3.1 Descriptieve discriminant analyse 5
1.3.2 Predictieve discriminant analyse 5
1.3.3 Veronderstellingen mbt de data 6
1.4 In Python 6
1.4.1 Descriptief 6
1.4.2 Predictief 6
2. Evaluatiemetrieken 8
2.1 Wat zijn evaluatiemetrieken? 8
2.2 Classi catie-metrieken 8
2.1 Binaire vs. Multi-class classi catie 8
2.2 Metrieken voor binaire en multi-class classi catie 9
2.2.1 Confusion matrix 9
2.2.2 Accuracy 10
2.2.3 Precision (P) 11
2.2.4 Recall (R) 12
2.2.5 F-measure (F) 13
2.2.6 Binaire en multi-class 13
2.3 Metrieken enkel voor binaire classi catie 15
2.3.1 TP rate & FP rate 15
2.3.2 Receiver Operator Characteristic Curve 15
2.3 Evaluatiemetrieken in python 18
3. Neurale netwerken 20
3.1 Wat is een neuraal netwerk? 20

2


fi fi fi fi

, 3.1.1 Activatie functie 21
3.1.2 Arti cieel neuraal netwerk 21
3.1.3 Voorbeeld XOR 23
3.2 Waar gebruik je een ANN binnen Data Science? 25
3.3 Hoe leert een ANN? 26
3.3.1 Normaliseren van data 32
3.4 ANN in Python 32
3.4.1 Te zetten stappen: 32
3.4.2 Voorbeeld XOR 33
3.4.3 ANN parameters 35
3.4.4 Voorbeeld MNIST 36
3.4.5 Voorbeeld Cereals US 38
4. Meta-heuristieken 40
4.1 Inleiding - optimalisatieproblemen 40
4.2 Algoritme versus heuristiek 42
4.1.1 Wat is een algoritme en wat is een heuristiek 42
4.1.2 Computationele complexiteit 42
4.3 Soorten heuristiek 43
4.3.1 ’Custom made’-heuristieken 43
4.3.2 Eenvoudige heuristieken 43
4.3.3 ‘Lokale zoek’-heuristieken 44
4.3.4 Meta-heuristieken 44
4.4 Simulated Annealing 45
4.5 T abu search 46
4.6 Genetische algoritmen 47
4.6.1 Stap 1 47
4.6.2 Stap 2 48
4.6.3 Stap 5 48
4.6.4 Stap 6 49
4.6.5 In python 51

3


fi

, 1. Discriminant analyse
1.1 Begrippen
Sta s sche technieken toepasbaar op
• 1 variabele = Univariate sta s ek
• 2 variabelen = Bivariate sta s ek
• meerdere variabelen = Mul variate sta s ek




A ankelijke variabele: variabele waarover (met behulp van een sta s sche techniek) een voorspelling of
uitspraak wordt gedaan —> gevolg
Ona ankelijke variabele: variabele is die gebruikt wordt om voorspellingen of uitspraken op te baseren
—> oorzaak

Groepen kunnen wederzijds uitsluitende groepen zijn, bv mannen en vrouwen of overlappende
deelgroepen zijn, bv vakken van verschillende jaren in uw studietraject




1.2 Inleiding
Behoort tot de mul variate sta s ek

Doel: voor een nieuw gegeven waarneming, te bepalen tot welke van een aantal gegeven groepen van
waarnemingen deze het best thuis hoort.

De a ankelijke variabele is de groep. De ona ankelijke variabelen zijn de gegevens die gebruikt worden
om tot de groep te komen

bv blauw geen overgewicht, bruin overgewicht

X-as is enkel gewicht: hieraan kunnen we niet zien of iemand
overgewicht hee : we hebben ook lengte nodig
—> overgewicht is a ankelijk van lengte: sommige van dat
gewicht wel overgewicht sommige niet: overlappend
—> als we enkel naar gewicht of lengte kijken hebben we
zeker overlapping, als we BMI berekenen door 2 door elkaar te
delen hebben we nog maar klein deel overlapping
—> hierdoor kunnen we zeggen als BMI kleiner is dan bepaald getal je geen overgewicht hebt, dit kunnen
we zeggen omdat ze (bijna) niet meer overlappen




4


fhtifh
fhti

ft tifh ti ti ti ti ti ti fh ti ti

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller compie. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.93. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

73918 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.93  1x  sold
  • (0)
  Add to cart