100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Summary AP Maths Matric Notes $11.07
In winkelwagen

Samenvatting

Summary AP Maths Matric Notes

 3 keer verkocht
  • Vak
  • Instelling

Typed and summarized IEB AP Math notes - does not include statistics notes. Includes worked examples and important concepts to note. Received a distinction in AP Maths at the end of Grade 11 due to the basis of these notes. Content includes: Complex Number Theory, Mathematical Induction, Radian...

[Meer zien]
Laatste update van het document: 1 jaar geleden

Voorbeeld 3 van de 26  pagina's

  • 5 juni 2023
  • 5 juni 2023
  • 26
  • 2020/2021
  • Samenvatting
avatar-seller
AP MATH EXAM NOTES 2021: substitute 𝑖 = √ −1 into this
equation, then (√ −1)2 + 1 =
Complex Number Theory: −1 + 1 = 0
Complex Numbers (ℂ) ❖ 𝑖 3 = −𝑖.

Examples:
Rewrite the following non-real numbers in
i-form:

Real Numbers (ℝ) Non-Real Numbers (ℝ’) √−9 = √9 × −1

√9 × √−1
= 3𝑖
Irrationals (ℚ’)
√−20 = √4 × 5 × −1
Rationals (ℚ) = 2 × √5 × √−1
Fractions = 2√5𝑖

(Exercise 1).
In general, complex number ℤ can
Integers (ℤ) be written in the form: ℤ = 𝑎 + 𝑏𝑖
𝑎, 𝑏 are real numbers.
✓ Examples of Non-real numbers: 𝑎 = real part of the complex
number, can be written as 𝑅𝑒(𝑧) =
√ −1 ; √ −3.
✓ Examples of irrationals: 𝑎.
𝑏 = imaginary part of the complex
√2 ; 𝜋 ; √5
number, can be written as 𝐼𝑚 (𝑧) =
The concept of non-real numbers: 𝑏.
➢ The square root of a negative Multiplication, addition and subtraction of
number is called a non-real or complex numbers:
imaginary number.
a) (5 − 3𝑖)2
Some notation: = 25 − 30𝑖 + 9𝑖 2
= 25 − 30𝑖 + 9(−1)
❖ The internationally accepted
= 25 − 30𝑖 − 9
notation for √ −1 is the letter 𝑖.
= 16 − 30𝑖
❖ We say that 𝑖 = √ −1. b) (3 + 2𝑖 )(3 − 2𝑖 ) − 𝑖 2 (𝑖 4 − 1)
❖ If we square both sides of the = 9 − 4𝑖 2 − 𝑖 6 + 𝑖 2
equality we get: 𝑖 2 = (√ −1)2 = = 9 − 4(−1) − 𝑖 4 . 𝑖 2 − 1
−1 = 9 + 4 − (1)(−1) − 1
❖ It is easy to verify that = 13
𝑖 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 𝑜𝑓 4 = 1
❖ Notice that 𝑖 is a non-real solution (Exercise 2).
of the equation: 𝑥 2 + 1 = 0. If you

,Complex conjugates and division of represented on the Argand plane as
complex numbers: follows:
▪ If 𝑧 = 𝑎 + 𝑏𝑖 is a given complex




Imaginary Axis
number where a and b are real
numbers and 𝑖 = √ −1, then the 3𝑖 𝑧 = 4 + 3𝑖
complex number 𝑧 ∗= 𝑎 − 𝑏𝑖 is 𝑅𝑒(𝑧) = 4
called the complex conjugate of
𝐼𝑚 (𝑧) = 3
𝑧 = 𝑎 + 𝑏𝑖.

Examples:
Write down the complex conjugates of the
following complex numbers: Real Axis 4
a) 𝑧 = 3 + 2𝑖
𝑧 ∗= 3 − 2𝑖
o Any complex number written
b) 𝑧 = 5𝑖 − 6
in the form 𝑧 = 𝑎 + 𝑏𝑖 is said
𝑧 ∗= −5𝑖 − 6
to be in rectangular form (or
4+𝑖 Cartesian form).
Write 𝑧 = 2−𝑖 in the form 𝑧 = 𝑎 + 𝑏𝑖 and
then state 𝑅𝑒(𝑧), 𝐼𝑚(𝑧) 𝑎𝑛𝑑 𝑧 ∗. The modulus of a complex number:
4+ 𝑖 2+ 𝑖 • The modulus of a complex number
𝑧= ×
2− 𝑖 2+ 𝑖 𝑧 is is the distance of 𝑧 from the
(4 + 𝑖 )(2 + 𝑖 ) origin.
𝑧= • We write the modulus of 𝑧 as |𝑧| or
(2 − 𝑖 )(2 + 𝑖 )
simply as 𝑟.
8 + 6𝑖 + 𝑖 2 • Consider the number 𝑧 = 𝑥 + 𝑦𝑖.
𝑧=
4 − 𝑖2
7 + 6𝑖
𝑧= 𝑧 = 𝑥 + 𝑦𝑖
5
7 6 𝑟 = |𝑧|
𝑧= + 𝑖
5 5
[𝐼𝑚(𝑧)]
7 6 7 6
𝑅𝑒(𝑧) = ; 𝐼𝑚(𝑧) = ; 𝑧 ∗= − 𝑖
5 5 5 5
[𝑅𝑒(𝑧) ]
(Exercise 3).
From Pythagoras we know that:
Complex (Argand) Planes:
𝑟2 = 𝑥 2 + 𝑦 2
o Complex numbers can be
represented by points in a plane 𝑟 = √𝑥 2 + 𝑦 2
called the complex plane or argand
plane. |𝑟| = √𝑥 2 + 𝑦 2
o Consider the complex number 𝑧 =
4 + 3𝑖. This number can be Examples:
Determine |𝑧| if 𝑧 = 4 + 3𝑖

, 2
Solution: 𝑟2 = (1)2 + (√3)

𝑟=2
𝑧 = 4 + 3𝑖 3. Using any of the three
𝑟 trigonometric ratios, we can
calculate the size of 𝜃.

√3
sin 𝜃 =
2
𝑟2 = (4)2 + (3)2
𝜃 = 60°
𝑟2 = 25
∴ arg(𝑧) = 60°
𝑟=5
(Exercise 4).
|𝑧| = 5
The modulus-argument form of a complex
The argument of z: number:

1. The argument of a complex a) Consider the following diagram
number 𝑧 is the angle between the representing the complex number
real axis and the line joining 𝑧 to 𝑧 = 𝑥 + 𝑦𝑖.
the origin. We refer to the
argument of 𝑧 as arg (𝑧).
𝑧 = 𝑥 + 𝑦𝑖
𝑟
𝑦
𝜃
𝑧 = 𝑥 + 𝑦𝑖 𝑥
𝑟 = |𝑧| b) We know from Trig that:
𝑥
𝜃 = arg (𝑧) = cos 𝜃 ; ∴ 𝑥 = 𝑟 cos 𝜃
𝑟
𝑦
and = sin 𝜃 ; ∴ 𝑦 = 𝑟 sin 𝜃
𝑟
2. We can use the following c) We can now rewrite 𝑧 = 𝑥 + 𝑦𝑖 as
trigonometric ratios to calculate the
follows:
size of 𝜃:
𝑦 𝑥 𝑦 = (𝑟 cos 𝜃) + 𝑖 (𝑟 sin 𝜃)
sin 𝜃 = ; cos 𝜃 = ; tan = 𝑟 cos 𝜃 + 𝑖𝑟 sin 𝜃
𝑟 𝑟 𝑥
= 𝑟(cos 𝜃 + 𝑖 sin 𝜃)
Example: d) 𝑧 = 𝑟(cos 𝜃 + 𝑖 sin 𝜃) is called the
Calculate arg (𝑧) if 𝑧 = 1 + (√3)𝑖 modulus-argument form or the
polar form of a complex number 𝑧.

Examples:
𝑧 = 1 + (√3)𝑖
Write 𝑧 = 2(cos 60° + 𝑖 sin 60°) in
𝑟 rectangular form 𝑧 = 𝑎 + 𝑏𝑖:
√3

𝜃
1

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper cayleighbadrick. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor $11.07. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 70057 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis

Laatst bekeken door jou


$11.07  3x  verkocht
  • (0)
In winkelwagen
Toegevoegd