100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Samenvatting - Wiskunde 'Module 12; analytische meetkunde' GO! Onderwijs $5.51   Add to cart

Summary

Samenvatting - Wiskunde 'Module 12; analytische meetkunde' GO! Onderwijs

 45 views  0 purchase
  • Course
  • Institution

Dit document is een samenvatting van 'Module 12; analytische meetkunde', uit het boek 'NANDO 4D' voor het vak Wiskunde in het GO! Onderwijs in de doorstroomfinaliteit/ASO.

Preview 1 out of 3  pages

  • June 24, 2023
  • 3
  • 2022/2023
  • Summary
  • Secondary school
  • 2e graad
  • 4
avatar-seller
Analytische meetkunde

1. SCALAIR PRODUCT OF INPRODUCT VAN TWEE VECTOREN

1.1 Norm van een vector
Definitie
De norm van een vector ⃗ AB is de grootte van de vector en wordt gelijkgesteld aan de lengte van het
lijnstuk [AB]. -> ‖⃗
AB‖=¿ AB ∨¿
Formule
Als A(x1, y1) en B(x2, y2) dan:
‖⃗AB‖=¿ AB ∨¿ = √ ( x 2−x 1 ) ²+( y 2 − y 1)²
AB‖=√ a +b ²
AB ) = (a, b), dan: ‖⃗
of als co(⃗ 2

Afstandsformule
¿ AB∨¿ = √ ( x 2−x 1 ) ²+( y 2 − y 1)²

1.2 Scalair product of inproduct van twee vectoren
Definitie
Het scalair product van twee vectoren u⃗ en ⃗v is gelijk aan het product van de norm van u⃗ , de norm
van ⃗v en de cosinus van de georiënteerde hoek tussen u⃗ en ⃗v . -> u⃗ ⋅⃗v =‖u⃗‖⋅ ‖⃗v‖⋅ cos ( u^
⃗ , ⃗v )
Eigenschap 1
2
u⃗ ⋅ ⃗u=‖u⃗‖ -> u⃗ ⋅ ⃗u =( u⃗ )2
= ‖u⃗‖⋅ ‖u⃗‖⋅cos 0°
2
= ‖u⃗‖
Eigenschap 2
u⃗ ⊥ ⃗v ⇔ ⃗u ⋅ ⃗v =0 -> u⃗ ⊥ ⃗v ⇨ ⃗u ⋅ ⃗v = ‖u⃗‖⋅ ‖⃗v‖⋅ cos 9 0 °
=0

1.3 Analytische uitdrukking van het inproduct van twee vectoren
Definitie
Het inproduct of scalair product van de vectoren u⃗ (x1, y1) en ⃗v(x2, y2) is de som van het product van
de x-coördinaten en het product van de y-coördinaten. -> u⃗ ⋅ ⃗v =x1 x 2+ y1 y 2

1.4 Hoek tussen twee vectoren
Formule
Als co(u⃗ ) = (x1, y1) en co( ⃗v ) = (x2, y2) dan:
x1 ⋅ x 2+ y 1 ⋅ y 2
cos ( ⃗u^
, ⃗v ) =
Bewijs
√x + y ⋅ √x + y
2
1
2
1
2
2
2
2


Gegeven: u⃗ met coördinaat u⃗ (x1, y1)
⃗v met coördinaat ⃗v (x2, y2)
Oplossing:
1) u⃗ ⋅ ⃗v =‖u⃗ ‖⋅‖⃗v‖⋅ cos ( u^
⃗ , ⃗v )

met: ‖u⃗‖= x 21+ y 21
lm ‖u⃗‖= √ x + y 2
2
2
2
2) u⃗ ⋅⃗v =x1 x 2+ y1 y 2
Besluit: ‖u⃗‖⋅ ‖⃗v‖⋅ cos ( u^
⃗ , ⃗v ) ¿ x 1 x 2 + y 1 y 2
x1 ⋅ x 2+ y 1 ⋅ y 2 1
cos ( ⃗u^
, ⃗v ) =
‖u⃗‖⋅ ‖⃗v‖
x1 ⋅ x 2+ y 1 ⋅ y 2

cos ( ⃗u^
, ⃗v ) = 2 2 2 2

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller thibauttaminiau. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.51. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

78998 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$5.51
  • (0)
  Add to cart