Statistiek deel 1: Theorie:
Partitie: opsplitsing van een verzameling in een stel niet-lege en niet-overlappende
deelverzamelingen
Cartesiaans product: productverzameling: verzameling van alle geordende koppels
LET OP: een verzameling wordt aangeduid met {}, een geordend koppel met () Bij geordende
koppels is de volgorde binnen de haakjes van belang. Kardinaal getal van zulk een
verzameling: #(A1 x A2) = #A1 x #A2
Bij een functie heeft elk element van de eerste verzameling slechts één beeldpunt in de tweede
verzameling. Andersom is het wel mogelijk dat de tweede verzameling tot meerdere punten van de
eerste verzameling in verband staat.
Notatie = f: A1 A2
a1 -> f(a1)
Indien andersom toch elk element van de tweede verzameling het beeldpunt is van slechts één
element uit de eerste verzameling spreken we over een bijectie.
A1 is het domein van de functie, f(A1) A2 is het bereik van de functie.
f(a1) is het beeldpunt of functiewaarde van a1.
Dit kan je grafisch voorstellen op een assenstelsel.
We spreken van een domein (waar je vertrekt), het bereik (waar je naartoe gaat) en het beeldpunt of
functiewaarde
Inversie van een functie: het inverse van een functie f van A1 naar A2 = f-1,
is de relatie R A2 x A1, dus van verzameling twee naar verzameling één. De inverse van een functie
hoeft niet noodzakelijk een functie te zijn.
Kardinaalgetal van een oneindig grote verzameling A:
A is aftelbaar ∞ Ǝ bijectie f : A ℕ volgnummer kunnen geven
Bv.: {0, 1, ½, 1/3, ¼, …}, maar ook Z , zelfs ℕ² en ℚ zijn aftelbaar ∞
Deel 1: beschrijvende statistiek
Gegevens of data komen tot stand als resultaat van een proef experiment. Slechts een gedeelte van
de informatie die de proef of het experiment oplevert wordt geregistreerd. Dit gedeelte is de
uitkomst van de proef en noteren we als ω . de verzameling van alle mogelijke uitkomsten noteren
we als Ω. Welk gedeelte van de informatie geregistreerd wordt hangt af van de vragen, theorieën of
hypothesen van de onderzoeker.
Meestal zijn de gegevens beschikbaar van verschillende ‘objecten’ of ‘(experimentele) eenheden’.
Dit gaat over elke situatie, elke meting, elk persoon, …
Het totaal aantal objecten of experimentele eenheden duiden we aan met de letter n. indien deze
eenheden geordend zijn kunnen we de opeenvolgende uitkomsten ordenen als ω1, ω2, ω3 …, ωn. Een
willekeurige uitkomst duiden we aan met de lopende of stomme index: ωi. I kan de waarden
aannemen van i tot en met n.
Gegevens kunnen gestructureerd worden door er variabelen op te definiëren.
X: Ω V
ω -> X(ω)
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller Jolien97. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $5.90. You're not tied to anything after your purchase.