100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Exam (elaborations) Mathématique $8.79   Add to cart

Exam (elaborations)

Exam (elaborations) Mathématique

 1 view  0 purchase
  • Course
  • Institution

DOCUMENTS ARE USEFUL AND BENEFICIAL AND ARE SO DETAILED. it helps you to understand deeply mathematic it helps me to pass my exams successfully

Preview 2 out of 9  pages

  • July 24, 2023
  • 9
  • 2022/2023
  • Exam (elaborations)
  • Questions & answers
avatar-seller
Mathématiques en MP* d’après un cours au lycée Louis-le-Grand


chapitre 10
Familles sommables


Dans tout ce chapitre I désigne un ensemble non vide (I = ∅ étant trivial, en utilisant la convention
X
ui = 0). On adopte également les conventions et notations suivantes.
i∈∅

→ On note R+ = R+ ∪ {+∞}.
→ On convient que pour tout réel x ∈ R+ , dans R+ , x + ∞ = +∞ + x = +∞.
→ On convient aussi que pour tout X ⊂ R+ , X = ∅ si et seulement si sup X = −∞, et si +∞ ∈ X
alors sup X = +∞.
X +∞
X
→ Finalement, si un est une série à termes positifs non convergente, on posera un = +∞.
n≥0 n=0



I Familles à termes positifs
Définition I.1.

Soit (ui )i∈I une famille de réels positifs. On dit que (ui )i∈I est sommable s’il existe M ≥ 0 tel
que pour toute partie finie J de I,
X
ui ≤ M
i∈J
!
X X
Dans ce cas, la somme de (ui )i∈I , notée ui , est sup ui
i∈I J⊂I i∈J
J est finie




Conventions :
X
→ Si (ui )i∈I n’est pas sommable, on convient que ui = +∞.
i∈I
X X
→ Soit (ui )i∈I et (vj )j∈J deux familles de termes réels positifs. On dit que, dans R+ on a ui = vi ,
i∈I i∈J
lorsque l’une des deux familles est sommable, si et seulement si l’autre l’est et que si elles le sont,
alors leurs sommes sont égales.
Proposition I.2.

Soit (ui )i∈I une famille de réels positifs. Si (ui )i∈I est sommable, alors K := {i ∈ I | ui > 0} est
au plus dénombrable.


1
 

Preuve : Soit n ∈ N . Supposons que A1/n := i ∈ I ui ≥ soit infini. Soit J une partie finie de
n
X X |J| X
A1/n telle que |J| > n ui . Alors ui ≥ > ui ce qui est faux.
i∈I i∈J n i∈I
[

Donc pour tout n ∈ N , A1/n est fini, donc K = A1/n au plus dénombrable.
n∈N∗

Dans toute la suite du chapitre, on suppose que I est au plus dénombrable.

1/9

, Mathématiques en MP* d’après un cours au lycée Louis-le-Grand


Proposition I.3.

Soient (ui )i∈I et (vi )i∈I deux familles de réels positifs.
1. Si (vi )i∈I est sommable et que pour tout i ∈ I, ui ≤ vi , alors (ui )i∈I est sommable et la
X X
somme vérifie ui ≤ vi
i∈I i∈I
2. Si (ui )i∈I n’est pas sommable et que pour tout i ∈ I, ui ≤ vi , alors (vi )i∈I n’est pas
sommable.
[
3. Soit (Jn )n∈N une suite croissante de parties finies de I telle que Jn = I. Alors (ui )i∈I
n∈N
X
est sommable si, et seulement si, la suite de terme général Sn := ui est majorée.
i∈Jn
X
Dans ce cas, Sn −−−−→ ui .
n→+∞
i∈I
4. Soit λ ≥ 0. Supposons que (ui )i∈I et (vi )i∈I soient sommables. Alors (λui )i∈I et (ui +vi )i∈I
sont sommables et
X X X X X
λui = λ ui et (ui + vi ) = ui + vi
i∈I i∈I i∈I i∈I i∈I



Preuve :
1. Soit J ⊂ I fini. On a alors X X X
uj ≤ vj ≤ vi < +∞
j∈J j∈J i∈I

Cette borne étant indépendante de J, on déduit que la famille (ui )i∈I est sommable et que de plus
X X
ui ≤ vi
i∈I i∈I


2. C’est simplement la contraposée du point précédent.
X
3. (⇒) Pour tout n ∈ N, Sn ≤ ui < +∞ et cette borne est indépendante de n.
i∈I
(⇐) Soit J une partie finie de I. Il existe N ∈ N tel que J ⊂ JN donc en notant K un majorant de
(Sn )n∈N
X
ui ≤ SN ≤ K
i∈J

donc (ui )i∈I est sommable, ce qui achève la preuve de l’équivalence.
X
Supposons maintenant que (ui )i∈I est sommable. Alors, pour tout n ∈ N, Sn ≤ ui . Croissante et
i∈I
X
majorée, (Sn ) converge vers ℓ ≤ ui . Par ailleurs, pour toute partie finie J de I, il existe NJ ∈ N
i∈I !
X X X
tel que pour tout entier n ≥ NJ , ui ≤ SNJ ≤ Sn ≤ ℓ. Donc ui = sup ui ≤ ℓ. Donc
i∈J i∈I J⊂I i∈J
J est finie

X
Sn −−−−→ ui
n→+∞
i∈I

[
4. Considérons une suite croissante (Jn )n∈N de parties finies de I telle que Jn = I et posons,
n∈N
X X
pour tout n ∈ N, Sn = ui et Sn′ = vi . D’après la proposition I.3, (Sn )n∈N et (Sn′ )n∈N sont
i∈Jn i∈Jn


2/9

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller onsbahri. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $8.79. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

62555 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$8.79
  • (0)
  Add to cart