Grafiek exponentiële functie
𝑥
De grafieken van exponentiële functies 𝑓 = 𝑏 · 𝑔 snijden de y-as in het punt (0,b).
De x-as is de horizontale asymptoot van de grafiek. Voor 𝑏 > 0 is de grafiek van f
stijgend als 𝑔 > 1 en dalend als 0 < 𝑔 < 1.
Logaritmen
𝑥
De exacte vergelijking van 𝑔 = 𝑎 heet de logaritme van a met het grondtal g. De
𝑔 𝑔 𝑏
oplossing noteer je als 𝑥 = 𝑙𝑜𝑔(𝑎). Andersom geldt: uit 𝑙𝑜𝑔(𝑎) = 𝑏 volgt 𝑎 = 𝑔 .
10
Als ergens 𝑙𝑜𝑔(𝑎) staat, zonder grondtal, wordt er 𝑙𝑜𝑔(𝑎) bedoeld. Je kunt elke
𝑔 𝑙𝑜𝑔(𝑎)
logaritme berekenen door de rekenregel 𝑙𝑜𝑔(𝑎) = 𝑙𝑜𝑔(𝑔)
.
Exponentieel groeiproces
Bij een exponentieel groeiproces met groeifactor g is de verdubbelingstijd de tijd die
nodig is om een hoeveelheid te verdubbelen. Deze tijd is de oplossing van de
𝑡 𝑔
vergelijking 𝑔 = 2. De verdubbelingstijd is dan dus 𝑡 = 𝑙𝑜𝑔(2). De halveringstijd
𝑡 1
werkt hetzelfde, met de vergelijking 𝑔 = 2
. De halveringstijd is dan dus
𝑔 1
𝑡= 𝑙𝑜𝑔( 2 ).
Grafieken van logaritmische functies
𝑥 𝑔
De grafieken van 𝑓(𝑥) = 𝑔 en 𝑘(𝑥) = 𝑙𝑜𝑔(𝑥) zijn
elkaars spiegelbeeld in de lijn 𝑦 = 𝑥. De lijn 𝑦 = 0 is
de horizontale asymptoot van de grafiek f. De lijn
𝑥 = 0 is de verticale asymptoot van de grafiek k. De
0
grafiek van f snijdt de y-as in (0, 1), want 𝑔 = 1. De
grafiek van k snijdt de x-as in (1, 0), want
𝑔
𝑙𝑜𝑔(1) = 0. Voor de grafiek van een logaritmische
, functie geldt altijd: het grondtal g is altijd positief maar niet gelijk aan 1. Voor
0 < 𝑔 < 1 is de grafiek dalend. Voor 𝑔 > 1 is de grafiek stijgend.
𝑔 𝑙𝑜𝑔(𝑎)
Met de regel 𝑙𝑜𝑔(𝑎) = 𝑙𝑜𝑔(𝑔)
kun je elke logaritme berekenen zonder grondtal. De
𝑏
𝑔 𝑙𝑜𝑔(𝑎)
rekenregel voor het berekenen van logaritmen met grondtal is: 𝑙𝑜𝑔(𝑎) = 𝑏 .
𝑙𝑜𝑔(𝑔)
Hiermee kun je elke logaritme schrijven als een logaritme met een ander grondtal.
Logaritmische schalen
Een schaalverdeling waar bij gelijke stappen met een vast getal wordt
vermenigvuldigd heet een logaritmische schaal (logschaal). Meestal is dat vaste
getal 10. Als de grafiek bij een logaritmische
schaalverdeling een rechte lijn is, dan is er sprake van
een exponentieel verband. De logaritmische schaal (op de
getallenlijn) lees je af door:
● Vaststellen met welke factor er wordt
vermenigvuldigd,
● Getallen langs de logschaal schrijven als machten
van deze factor,
● Aflezen welk exponent bij het gezochte getal hoort,
● De waarde berekenen van het gezochte getal
Lineair verband
Een lineair verband geldt voor x en y als geldt: de waarde van x neemt met een vast
getal toe, waardoor de waarde van y ook met een vast getal toeneemt. De formule
van een lineair verband is 𝑦 = 𝑎𝑥 + 𝑏. a is hierin het hellingsgetal (de
richtingscoëfficiënt) en b is het startgetal.
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller Menthevgeuns. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $4.88. You're not tied to anything after your purchase.