100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Tentamen (uitwerkingen)

CS 599: Autonomous Cyber-Physical Systems

Beoordeling
-
Verkocht
-
Pagina's
4
Cijfer
A+
Geüpload op
07-08-2023
Geschreven in
2023/2024

Instructor: Jyotirmoy V. Deshmukh Assigned: April 29, 2019. Due (by email): May 8, 2019 Instructions: 1. In this exam we will use a unique single digit number that we will generate from your USC student ID. Add all digits of your USC ID. Then add all the digits of the result. Keep doing this till you have a single positive integer in [1, 9] – we will call this your key. For example, if my USC ID is 7895, then my key is 2. 2. Please feel free to refer to any material that you deem fit. 3. Discussions among fellow students are generally not encouraged. If you do wish to ask questions, please do it on Slack or through email where Nicole or I will answer. Please adhere to the academic integrity policy. 4. We prefer that you turn in a pdf by email before class to both Nicole and me. You can also hand in a printed/handwritten copy in class. Problem 1. [20 points] Consider a 2D linear dynamical system as given below. Here, k is your key.  x˙1 x˙2  =  −10 k −1 −1   x1 x2  (1) Given a set of initial states I and a set of unsafe states F, recall that a strict barrier certificate for a system of the form x˙ = f(x) is defined using a function B(x) which has the following properties: 1. ∀x ∈ I: B(x) ≤ 0, 2. ∀x ∈ F: B(x) > 0, 3. ∀x s.t. B(x) = 0, ∂B ∂x f(x) < 0 Let I be defined as: −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. Let F be defined as x2 > 10 or x2 < −10. The value of x1 is unconstrained for the set F. Your task is to find a barrier certificate that proves safety for the above system. 1 Hints. If it helps, you can use Matlab to plot the zero level set of your barrier function (i.e. the function B(x) = 0). You can also use the plots to prove the first two conditions of the barrier certificate. If you are taking the Matlab route, feel free to explore functions such as lyap, fimplicit, plot. These can help you with finding the barrier certificate and plotting. Just to be clear, you don’t have to use Matlab at all, but it is only if you find it useful, and don’t like doing pen-and-paper symbol manipulations. Also, for this problem, an axis-aligned ellipse is enough to serve as a barrier certificate. (I.e. a quadratic function of the form ax2 1+bx2 2−c, for some positive a, b, c.) Extra Credit. [10 points] Can you find a

Meer zien Lees minder
Instelling
Vak








Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Geschreven voor

Vak

Documentinformatie

Geüpload op
7 augustus 2023
Aantal pagina's
4
Geschreven in
2023/2024
Type
Tentamen (uitwerkingen)
Bevat
Vragen en antwoorden

Onderwerpen

Voorbeeld van de inhoud

Second Mid-Term
CS 599: Autonomous Cyber-Physical Systems
Instructor: Jyotirmoy V. Deshmukh

Assigned: April 29, 2019. Due (by email): May 8, 2019


Instructions:
1. In this exam we will use a unique single digit number that we
will generate from your USC student ID. Add all digits of your
USC ID. Then add all the digits of the result. Keep doing this
till you have a single positive integer in [1, 9] – we will call this
your key. For example, if my USC ID is 7895, then my key is 2.
2. Please feel free to refer to any material that you deem fit.
3. Discussions among fellow students are generally not encouraged. If you
do wish to ask questions, please do it on Slack or through email where
Nicole or I will answer. Please adhere to the academic integrity policy.
4. We prefer that you turn in a pdf by email before class to both Nicole and
me. You can also hand in a printed/handwritten copy in class.

Problem 1. [20 points] Consider a 2D linear dynamical system as given below.
Here, k is your key.
    
x˙1 −10 k x1
= (1)
x˙2 −1 −1 x2

Given a set of initial states I and a set of unsafe states F , recall that a strict
barrier certificate for a system of the form ẋ = f (x) is defined using a function
B(x) which has the following properties:

1. ∀x ∈ I: B(x) ≤ 0,
2. ∀x ∈ F : B(x) > 0,
∂B
3. ∀x s.t. B(x) = 0, ∂x f (x) <0
Let I be defined as: −1 ≤ x1 ≤ 1 and −1 ≤ x2 ≤ 1. Let F be defined as
x2 > 10 or x2 < −10. The value of x1 is unconstrained for the set F . Your task
is to find a barrier certificate that proves safety for the above system.


1
$3.49
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
FaiFai

Maak kennis met de verkoper

Seller avatar
FaiFai Harvard College
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
4
Lid sinds
2 jaar
Aantal volgers
2
Documenten
145
Laatst verkocht
1 jaar geleden

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen