100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting Chemie: H18. Buffers

Rating
-
Sold
-
Pages
4
Uploaded on
11-08-2023
Written in
2022/2023

Een volledige samenvatting over buffers. De samenvatting bevat enkele formules en voorbeeldoefeningen.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
August 11, 2023
Number of pages
4
Written in
2022/2023
Type
Summary

Subjects

Content preview

H18. Buffers
1. Eigenschappen van een buffer
De pH van een bufferoplossing verandert weinig bij het toevoegen van een beperkte hoeveelheid
zuur of base of bij het toevoegen van water

Buffers zijn zeer belangrijk → ze worden heel veel gebruikt in laboratoria + in de industrie bij
processen waar men een milieu met constante pH nodig heeft
➔ Voorbeelden:
- Bij experimenten in de analytische chemie waar de pH constant moet blijven → bv.
titreren
- Enzymatische processen
- Meten van reactiesnelheden
- In menselijk bloed, zeewater, rivierwater, …

Er bestaan 2 soorten bufferoplossingen die de pH stabiel te kunnen houden:
1) Een zwak zuur en zijn (geconjugeerde) zwakke base
→ Bv. CH3COOH/CH3COO-
2) Een zwakke base en zijn (geconjugeerd) zwak zuur
→ Bv. NH3/NH4+

➔ Beide buffers steunen op een evenwicht waarbij 1 proton (H+) wordt uitgewisseld
→ Ofwel wordt het proton door de zure component afgestaand (1)
→ Ofwel wordt het door de geconjugeerde base opgenomen (2)
➔ Het gaat over ZWAKKE zuren + ZWAKKE basen want sterke zuren + sterke basen
ioniseren of dissociëren volledig waardoor er geen evenwicht is
→ Zwakke zuren + basen ioniseren of dissociëren niet volledig
➔ De geconjugeerde zwakke base wordt vaak onder de vorm van een zout toegevoegt aan
de oplossing
→ Het is een zout van een zwak zuur + een sterke base
→ Bv. CH3COONa (natriumacetaat) is het zout van CH3COOH en NaOH (sterke base)
---> Dus CH3COOH/CH3COONa is de buffer
---> Is hetzelfde als CH3COOH/CH3COO- want CH3COONa → CH3COO- + Na+
➔ Beide componenten zijn in vrij grote hoeveelheden aanwezig
➔ De concentraties van beide componenten zijn ± even groot

➔ Er is een evenwicht (dubbele pijl) waarbij 1 proton kan uitgewisseld
worden
→ Als er te veel protonen in de oplossing zijn, dan zal de reactie naar
links doorgaan
1) Acetaat (base dus proton acceptor) zal het proton opnemen
2) Ammoniak zal het proton opnemen
→ Als de oplossing te basisch is (te weinig protonen aanwezig), dan zal
de reactie naar rechts verlopen
1) Azijnzuur (zuur dus protondonor) zal het proton afsplitsen
2) Ammonium zal het proton afsplitsen
➔ In beide richtingen kan een kleine hoeveelheid te veel of te weinig zuur
gebufferd worden

, Bij een geconjugeerd systeem (bufferkoppel) is er maar 1 H+ verschil tussen de zure en basische
component
Bij polyfunctionele verbindingen kunnen er meerdere bufferkoppels gevormd worden:
➔ Bv. Fosfaatbuffers:
• = Buffers o.b.v. fosfaatverbindingen
• De mogelijke bufferparen zijn:
➢ H3PO4/H2PO4-
H3PO4 + H2O ↔ H2PO4- + H3O+ ---> pKa = 2,1

➢ H2PO4-/HPO42-
H2PO4- + H2O ↔ HPO42- + H3O+ ---> pKa = 7,2

➢ HPO42-/PO43-
HPO42- + H2O ↔ PO43- + H3O+ ---> pKa = 11,9
➔ Stel je wil een bufferoplossing maken met een pH van ± 2,5, dan kies je voor de 1ste buffer
Stel je wil menselijk bloed (pH = 7,35-7,45) nabootsen, dan kies je voor de 2de buffer
Stel je wil een bufferoplossing met een pH van ± 11,6, dan kies je voor de 3de buffer
→ Dus je kiest een pKa die in de buurt van de pH komt

De formule om de pH van een buffer te berekenen:




➔ Omdat de zure + basische component in dezelfde oplossing zitten is het volume aan elkaar
gelijk waardoor je het kan schrappen en er enkel mol overblijft
➔ Het verdunnen van een bufferoplossing heeft geen invloed op de pH van deze oplossing
want de verhouding van de volumes blijft ongewijzigd
→ Het bufferend vermogen zal wel dalen als je een bufferoplossing verdund, omdat het
aantal deeltjes per volume wel verminderd

2. Het buffergebied
Het buffergebied = het pH gebied rond zijn pKa → binnen dat gebied (pKa – 1 tot pKa + 1) zal een
buffer het beste kunnen bufferen
𝐶𝑏𝑎𝑠𝑒 pH =
⁄𝐶
𝑧𝑢𝑢𝑟
1⁄ pKa – 2
99 Bv. CH3COOH/CH3COO- : pKa = 4,75
𝟏𝟎⁄ pKa – 1 10
𝟗𝟎 ➢ pH = pKa + log 90

𝟓𝟎⁄  pH = pKa + log 10-1
pKa
𝟓𝟎 = Buffergebied  pH = pKa – 1 = 4,75 – 1 = 3,75
𝟗𝟎⁄ pKa + 1 90
𝟏𝟎 ➢ pH = pKa + log 10

99⁄  pH = pKa + log 101
1
pKa + 2
 pH = pKa + 1 = 4,75 + 1 = 5,75
➔ Een ideale buffer = een buffer waarbij de concentraties gelijk zijn → Het buffergebied is dus: 3,75 – 5,75
aan elkaar (want dan is pH = pKa)
→ Ze kunnen zowel toegevoegde zuren als basen goed bufferen
$8.97
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
nimarnatin Plantijn Hogeschool van de provincie Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
34
Member since
2 year
Number of followers
7
Documents
73
Last sold
2 months ago

4.5

21 reviews

5
17
4
1
3
1
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions