100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Summary: Cognitive Science, Third Edition, Chapters 7-13 $5.46
Add to cart

Summary

Summary: Cognitive Science, Third Edition, Chapters 7-13

7 reviews
 355 views  34 purchases
  • Course
  • Institution
  • Book

A summary of chapters 7-13 of the book 'Cognitive Science, an introduction to the study of mind', Third Edition. Part of the course Artificial Intelligence at Utrecht University. The Network Approach - The Evolutionary Approach - The Linguistic Approach - The Emotional Approach - The Social Approac...

[Show more]

Preview 4 out of 31  pages

  • No
  • 7, 8, 9, 10, 11, 12, 13
  • October 28, 2017
  • 31
  • 2017/2018
  • Summary

7  reviews

review-writer-avatar

By: smunimtazwar • 3 year ago

review-writer-avatar

By: raspberryjungle • 3 year ago

review-writer-avatar

By: nikolaylarin • 4 year ago

review-writer-avatar

By: tudormoraru1 • 4 year ago

review-writer-avatar

By: isabelvrielink20 • 5 year ago

review-writer-avatar

By: MichielSchreurs • 6 year ago

review-writer-avatar

By: akenvanharry • 7 year ago

avatar-seller
7.​ ​The​ ​Network​ ​Approach

Influenced​ ​by​ ​the​ ​principles​ ​of​ ​operation​ ​and​ ​organization​ ​of​ ​real-world​ ​brains.
Connectionism​​ ​tries​ ​to​ ​understand​ ​how​ ​the​ ​mind​ ​performs​ ​certain​ ​kinds​ ​of​ ​operations​ ​via
the​ ​construction​ ​of​ ​an​ ​artificial​ ​neural​ ​network​ ​(ANN)​​ ​-​ ​a​ ​computer​ ​simulation​ ​of​ ​how
populations​ ​of​ ​actual​ ​neurons​ ​perform​ ​tasks.

Artificial​ ​Neural​ ​Networks
Traditional​ ​computers​ ​are​ ​serial​ ​processors​:​ ​perform​ ​one​ ​computation​ ​at​ ​a​ ​time.​ ​The​ ​brain,
as​ ​well​ ​as​ ​ANNs,​ ​are​ ​parallel​ ​distributed​ ​processors​:​ ​large​ ​numbers​ ​of​ ​computing​ ​units
perform​ ​their​ ​calculations​ ​in​ ​parallel.​ ​Knowledge-based​ ​approach​:​ ​One​ ​conceptualizes​ ​the
problem​ ​and​ ​its​ ​solution​ ​in​ ​terms​ ​of​ ​symbols​ ​and​ ​transformations​ ​on​ ​the​ ​symbols​ ​(used​ ​a​ ​lot
in​ ​AI).​ ​Behavior-based​ ​approach​:​ ​A​ ​network​ ​is​ ​allowed​ ​to​ ​produce​ ​a​ ​solution​ ​on​ ​its​ ​own.
This​ ​does​ ​not​ ​involve​ ​the​ ​use​ ​of​ ​symbols​ ​(ANNs).​ ​Representations​ ​are​ ​inherent​ ​in​ ​ANNs​ ​but
do​ ​not​ ​exist​ ​in​ ​them​ ​in​ ​the​ ​form​ ​of​ ​symbols.​ ​They​ ​exist​ ​in​ ​most​ ​networks​ ​as​ ​a​ ​pattern​ ​of
activation​ ​among​ ​the​ ​network’s​ ​elements​ ​-​ ​distributed​ ​representation​.​ ​Local
representation​:​ ​in​ ​the​ ​form​ ​of​ ​activation​ ​in​ ​a​ ​single​ ​node​ ​in​ ​a​ ​network.
Pro:​​ ​They​ ​are​ ​capable​ ​of​ ​learning​ ​—>​ ​adaptively​ ​change​ ​their​ ​responses​ ​over​ ​time​ ​as​ ​they
are​ ​presented​ ​with​ ​new​ ​information​ ​(but​ ​also​ ​possible​ ​in​ ​machines​ ​that​ ​use​ ​symbolic
methods).

Characteristics​ ​of​ ​ANNs:
● Only​ ​exist​ ​as​ ​software​ ​simulations​ ​that​ ​are​ ​run​ ​on​ ​a​ ​computer
● Each​ ​neuron​ ​is​ ​represented​ ​as​ ​a​ ​node​,​ ​and​ ​the​ ​connections​ ​between​ ​nodes​ ​are
represented​ ​as​ ​links​.
● Signal​ ​node:​ ​activation​ ​value​ ​—>​ ​runs​ ​along​ ​the​ ​link​ ​that​ ​connects​ ​it​ ​to​ ​another
node(s)
● Input​ ​>​ ​threshold​ ​value​ ​—>​ ​fire
● Links​ ​have​ ​weights​:​ ​specify​ ​the​ ​strength​ ​of​ ​a​ ​link.​ ​Higher​ ​value,​ ​higher​ ​weight.

Early​ ​conceptions​ ​of​ ​Neural​ ​Networks
First​ ​researchers​ ​to​ ​propose​ ​how​ ​biological​ ​networks​ ​might​ ​function:​ ​McCulloch​ ​and​ ​Pitts,
1943.​ ​They​ ​assumed​ ​each​ ​neuron​ ​had​ ​a​ ​binary​ ​output,​ ​it​ ​could​ ​either​ ​send​ ​out​ ​a​ ​signal​ ​or
not​ ​send​ ​out​ ​a​ ​signal.​ ​Donald​ ​O.​ ​Hebb​ ​(1949)​ ​was​ ​the​ ​first​ ​to​ ​propose​ ​how​ ​changes​ ​among
neurons​ ​might​ ​explain​ ​learning​ ​—>​ ​Hebb​ ​rule:​ ​when​ ​one​ ​cell​ ​repeatedly​ ​activates​ ​another,
the​ ​strength​ ​of​ ​the​ ​connection​ ​between​ ​two​ ​cells​ ​is​ ​increased.​ ​He​ ​defined​ ​2​ ​types​ ​of​ ​cell
groupings:
1. Cell​ ​assembly:​​ ​a​ ​small​ ​group​ ​of​ ​neurons​ ​that​ ​repeatedly​ ​stimulate​ ​one​ ​another
2. Phase​ ​sequence:​​ ​a​ ​group​ ​of​ ​connected​ ​cell​ ​assemblies​ ​that​ ​fire​ ​synchronously​ ​or
nearly​ ​synchronously
Rosenblatt​ ​introduced​ ​in​ ​1958​ ​the​ ​perceptron​:​ ​neural​ ​nets​ ​designed​ ​to​ ​detect​ ​and​ ​recognize
patterned​ ​information​ ​about​ ​the​ ​world,​ ​store​ ​this​ ​information,​ ​and​ ​use​ ​it​ ​in​ ​some​ ​fashion.
They​ ​also​ ​learn​ ​from​ ​experience:​ ​can​ ​modify​ ​their​ ​connection​ ​strengths​ ​by​ ​comparing​ ​their
actual​ ​output​ ​with​ ​a​ ​desired​ ​output​ ​called​ ​the​ ​teacher​.

Back​ ​Propagation​ ​and​ ​Convergent​ ​Dynamics

,Three​ ​layer​ ​network:
1. Input​ ​layer​​ ​-​ ​a​ ​representation​ ​of​ ​the​ ​stimulus​ ​is​ ​presented
2. Hidden​ ​layer​​ ​-​ ​feeds​ ​activation​ ​energy​ ​to​ ​an​ ​output​ ​layer
3. Output​ ​layer​​ ​-​ ​generates​ ​a​ ​representation​ ​of​ ​the​ ​response
Error​ ​signal:​​ ​the​ ​difference​ ​between​ ​the​ ​actual​ ​and​ ​the​ ​desired​ ​outputs.​ ​The​ ​network​ ​uses
the​ ​error​ ​signal​ ​to​ ​modify​ ​the​ ​weights​ ​of​ ​the​ ​links.​ ​The​ ​kind​ ​of​ ​training​ ​based​ ​on​ ​error
feedback​ ​is​ ​called​ ​the​ ​generalized​ ​delta​ ​rule​​ ​or​ ​the​ ​back-propagation​​ ​learning​ ​model.

NETtalk​​ ​Is​ ​an​ ​ANN​ ​designed​ ​to​ ​read​ ​written​ ​English.​ ​Presented​ ​written​ ​letters​ ​—>
pronounces​ ​them​ ​—>​ ​fed​ ​to​ ​a​ ​speech​ ​synthesizer​ ​for​ ​the​ ​production​ ​of​ ​the​ ​sounds.​ ​System
consists​ ​of​ ​3​ ​layers.

Connectionist​ ​Approach:
Pro​:
● The​ ​similarity​ ​between​ ​network​ ​models​ ​and​ ​real-life​ ​neural​ ​networks:​ b ​ iological
plausibility​.
○ Artificial​ ​Networks​ ​share​ ​general​ ​structural​ ​and​ ​functional​ ​correlates​ ​with
biological​ ​networks
○ Artificial​ ​networks​ ​are​ ​capable​ ​of​ ​learning
○ Artificial​ ​networks​ ​react​ ​to​ ​damage​ ​in​ ​the​ ​same​ ​way​ ​that​ ​human​ ​brains​ ​do:
neural​ ​networks​ ​demonstrate​ ​graceful​ ​degradation​​ ​-​ ​gradual​ ​decrease​ ​in
performance​ ​with​ ​increased​ ​damage​ ​to​ ​the​ ​network.​ ​Small​ ​amounts​ ​of
damage​ ​—>​ ​small​ ​reductions​ ​in​ ​performance.
● Displays​ ​interference​​ ​(2​ ​sets​ ​of​ ​information​ ​are​ ​similar​ ​in​ ​content​ ​and​ ​interfere​ ​with
each​ ​other)​ ​and​ ​generalization​​ ​(represented​ ​by​ ​the​ ​ability​ ​to​ ​apply​ ​a​ ​learned​ ​rule​ ​to
a​ ​novel​ ​situation)
Con​:
● Biological​ ​plausibility​ ​should​ ​also​ ​be​ ​viewed​ ​as​ ​problematic
○ Real​ ​neurons​ ​are​ ​massively​ ​parallel,​ ​it​ ​is​ ​not​ ​yet​ ​possible​ ​to​ ​simulate​ ​parallel
processing​ ​of​ ​this​ ​magnitude.
○ Most​ ​networks​ ​show​ ​a​ ​convergent​ ​dynamics​​ ​approach,​ ​the​ ​activity​ ​of​ ​such​ ​a
network​ ​eventually​ ​dies​ ​down​ ​and​ ​reaches​ ​a​ ​stable​ ​state.​ ​This​ ​is​ ​not​ ​the​ ​case
for​ ​brain​ ​activity.​ ​Real​ ​neural​ ​networks​ ​are​ ​oscillatory​ ​and​ ​chaotic.
● Networks​ ​may​ ​have​ ​inadequate​ ​learning​ ​rules
○ Stability-plasticity​ ​dilemma​:​ ​states​ ​that​ ​a​ ​network​ ​should​ ​be​ ​plastic​ ​enough
to​ ​store​ ​novel​ ​input​ ​patterns;​ ​at​ ​the​ ​same​ ​time,​ ​it​ ​should​ ​be​ ​stable​ ​enough​ ​to
prevent​ ​previously​ ​encoded​ ​patterns​ ​form​ ​being​ ​erased.​ ​The​ ​fact​ ​that​ ​ANNs
show​ ​evidence​ ​of​ ​being​ ​caught​ ​in​ ​this​ ​dilemma​ ​is​ ​useful​ ​because​ ​it​ ​may​ ​offer
some​ ​insights​ ​into​ ​human​ ​interference.
○ Catastrophic​ ​interference:​​ ​occurs​ ​in​ ​instances​ ​in​ ​which​ ​a​ ​network​ ​has
learned​ ​to​ ​recognize​ ​a​ ​set​ ​of​ ​patterns​ ​and​ ​then​ ​is​ ​called​ ​on​ ​to​ ​learn​ ​a​ ​new​ ​set.
The​ ​newly​ ​learned​ ​patterns​ ​suddenly​ ​and​ ​completely​ ​erase​ ​the​ ​network’s
memory​ ​of​ ​the​ ​original​ ​patterns.
○ In​ ​supervised​ ​networks​,​ ​a​ ​“teacher”​ ​is​ ​necessary​ ​for​ ​the​ ​network​ ​to​ ​learn.
But​ ​where​ ​does​ ​this​ ​teacher​ ​come​ ​from?

,Semantic​ ​Networks
In​ ​semantic​ ​networks​​ ​each​ ​node​ ​has​ ​a​ ​specific​ ​meaning​ ​and,​ ​therefore,​ ​employs​ ​local
representation​ ​of​ ​concepts.​ ​Has​ ​been​ ​adopted​ ​by​ ​cognitive​ ​psychologists​ ​as​ ​a​ ​way​ ​to
explain​ ​the​ ​organization​ ​and​ ​retrieval​ ​of​ ​information​ ​in​ ​long-term​ ​memory.

Characteristics​ ​of​ ​Semantic​ ​Networks:
● A​ ​node’s​ ​activity​ ​can​ ​spread​ ​outward​ ​along​ ​links​ ​to​ ​activate​ ​other​ ​nodes,​ ​these​ ​nodes
can​ ​then​ ​activate​ ​still​ ​others:​ ​spreading​ ​activation​.​ ​Is​ ​thought​ ​to​ ​underlie​ ​retrieval​ ​of
information​ ​from​ ​long-term​ ​memory.​ ​Alternate​ ​associations​ ​that​ ​facilitate​ ​recall​ ​are
also​ ​called​ ​retrieval​ ​cues​.
● The​ ​distance​ ​between​ ​two​ ​nodes​ ​is​ ​determined​ ​by​ ​their​ ​degree​ ​of​ ​relatedness.
● Priming​:​ ​the​ ​processing​ ​of​ ​a​ ​stimulus​ ​is​ ​facilitated​ ​by​ ​the​ ​network’s​ ​prior​ ​exposure​ ​to
a​ ​related​ ​stimulus.

Hierarchical​ ​Semantic​ ​Network
Study​ ​by​ ​Collins​ ​and​ ​Quillian​ ​suggests​ ​that​ ​semantic​ ​networks​ ​may​ ​have​ ​a​ h ​ ierarchical
organization​,​ ​with​ ​different​ ​levels​ ​representing​ ​concepts​ ​ranging​ ​from​ ​the​ ​most​ ​abstract
down​ ​to​ ​the​ ​most​ ​concrete.​ ​They​ ​used​ ​a​ ​sentence​ ​verification​​ ​task.
1. Superordinate​​ ​category:​ ​animals​ ​—>​ ​eat​ ​food,​ ​breathe
2. Ordinate​​ ​categories:​ ​birds,​ ​cats​ ​—>​ ​can​ ​fly,​ ​purr
3. Subordinate​​ ​categories:​ ​Canary,​ ​Alleycat​ ​—>​ ​can​ ​sing,​ ​is​ ​yellow
A​ ​canary​ ​is​ ​an​ ​animal​ ​—>​ ​longer​ ​reaction​ ​time​ ​than​ ​‘A​ ​canary​ ​is​ ​a​ ​bird/a​ ​canary’
“isa”​ ​and​ ​“has​ ​a”​ ​link,​​ ​bird​ ​“isa”​ ​animal,​ ​bird​ ​“hasa"​ ​feathers
Con​:
● Concepts​ ​may​ ​be​ ​represented​ ​by​ ​prototypes​​ ​that​ ​represent​ ​generic​ ​or​ ​idealized
versions​ ​of​ ​those​ ​concepts.
● Principle​ ​of​ ​cognitive​ ​economy​:​ ​nodes​ ​should​ ​not​ ​have​ ​to​ ​be​ ​coded​ ​for​ ​more​ ​times
than​ ​is​ ​necessary.​ ​Seems​ ​to​ ​work​ ​better​ ​in​ ​principle​ ​than​ ​in​ ​reality.

Propositional​ ​Semantic​ ​Networks
ACT*​ ​is​ ​a​ ​hybrid​ ​model​:​ ​it​ ​specifies​ ​how​ ​multiple​ ​memory​ ​systems​ ​interact​ ​and​ ​how​ ​explicit
knowledge​ ​is​ ​represented.​ ​A​ ​proposition​ ​is​ ​the​ ​smallest​ ​unit​ ​of​ ​knowledge​ ​that​ ​can​ ​be
verified.​ ​Propositional​ ​networks​ ​allow​ ​for​ ​a​ ​greater​ ​variety​ ​of​ ​relationships​ ​among​ ​concepts.
An​ ​agent​ ​link​​ ​specifies​ ​the​ ​subject​ ​of​ ​the​ ​proposition,​ ​an​ ​object​ ​link​​ ​denotes​ ​the​ ​object​ ​or
thing​ ​to​ ​which​ ​the​ ​action​ ​is​ ​directed.​ ​The​ ​relation​ ​link​​ ​characterizes​ ​the​ ​relation​ ​between​ ​the
agent​ ​and​ ​the​ ​object.​ ​Anderson’s​ ​ACT*​ ​model​ ​can​ ​also​ ​account​ ​for​ ​the​ ​specific​ ​memories
each​ ​of​ ​us​ ​has​ ​as​ ​part​ ​of​ ​our​ ​experience.​ ​His​ ​model​ ​does​ ​this​ ​via​ ​its​ ​creation​ ​of​ ​2​ ​classes​ ​of
nodes:​ ​type​​ ​node;​ ​corresponds​ ​to​ ​an​ ​entire​ ​category​ ​(‘dogs’),​ t​ oken​​ ​nodes;​ ​correspond​ ​to
specific​ ​instances​ ​or​ ​specific​ ​items​ ​within​ ​a​ ​category​ ​(“Fido”).

Semantic​ ​Networks​ ​Evaluation:
Con​:
● T.O.T.​ ​phenomenon​:​ ​‘tip​ ​of​ ​the​ ​tongue’.​ ​Semantic​ ​Networks​ ​cannot​ ​easily​ ​explain
these​ ​sort​ ​of​ ​retrieval​ ​blocks.
● The​ ​opposite;​ ​the​ ​situation​ ​in​ ​which​ ​we​ ​can​ ​successfully​ ​retrieve​ ​an​ ​item​ ​from
memory​ ​despite​ ​the​ ​face​ ​that​ ​there​ ​are​ ​no​ ​close​ ​connections​ ​between​ ​retrieval​ ​cues

, and​ ​the​ ​target.​ ​Multiple​ ​links​ ​that​ ​radiate​ ​outward​ ​toward​ ​other​ ​nodes​ ​-​ ​a​ ​high​ d
​ egree
of​ ​fan​​ ​(eg​ ​water).
● Excessive​ ​activation​ ​—>​ ​solution:​ ​implementation​ ​of​ ​an​ ​inhibitory​ ​network.
● Reconstructive​ ​memory​:​ ​constitutes​ ​a​ ​separate​ ​process​ ​of​ ​retrieving​ ​items​ ​-​ ​one
that​ ​does​ ​not​ ​rely​ ​on​ ​spreading​ ​activation​ ​and​ ​the​ ​inherent,​ ​automatic​ ​characteristics
of​ ​the​ ​network.​ ​Guided​ ​search​​ ​-​ ​one​ ​governed​ ​by​ ​intelligence​ ​and​ ​reasoning​ ​(‘What
did​ ​you​ ​do​ ​on​ ​your​ ​birthday​ ​last​ ​year?’).

Network​ ​Science
Network​ ​science​:​ ​to​ ​explore​ ​the​ ​way​ ​in​ ​which​ ​complex​ ​networks​ ​operate.​ ​A​ ​network​ ​is
considered​ ​as​ ​any​ ​collection​ ​of​ ​interconnected​ ​and​ ​interacting​ ​parts.​ ​It’s​ ​interdisciplinary.
Contemporary​ ​network​ ​scientists​ ​additionally​ ​consider​ ​networks​ ​as​ ​dynamical​ ​systems​ ​that
are​ ​doing​ ​things.​ ​All​ ​networks​ ​share​ ​some​ ​universal​ ​mechanism​ ​of​ ​action.

Centrality
Issue​ ​of​ ​centrality​:​ ​how​ ​a​ ​network​ ​coordinates​ ​information.​ ​This​ ​can​ ​be​ ​accomplished
through​ ​a​ ​“leader”​ ​that​ ​receives​ ​information,​ ​evaluates​ ​it,​ ​and​ ​issues​ ​commands.​ ​Computers,
armies​ ​etc​ ​are​ ​systems​ ​of​ ​this​ ​kind.​ ​But​ ​the​ ​interesting​ ​case​ ​is​ ​how​ ​networks​ ​without​ ​any
such​ ​center​ ​achieve​ ​this​ ​kind​ ​of​ ​coordinated​ ​action.​ ​This​ ​question​ ​has​ ​particular​ ​relevance
for​ ​the​ ​human​ ​mind​ ​—>​ ​Cartesian​ ​theater​ ​and​ ​the​ ​homunculus​ ​problem.​ ​If​ ​we​ ​could​ ​figure
out​ ​the​ ​centrality​ ​issue,​ ​we​ ​might​ ​also​ ​determine​ ​the​ ​answer​ ​to​ ​the​ ​mystery​ ​of
consciousness.​ ​In​ ​some​ ​networks,​ ​coordinated​ ​global​ ​activity​ ​happens​ ​simply​ ​as​ ​a​ ​function
of​ ​spreading​ ​activation​ ​that​ ​disperses​ ​throughout​ ​the​ ​system​ ​quickly​ ​but​ ​which​ ​can​ ​arise
from​ ​any​ ​part​ ​of​ ​it.

Hierarchical​ ​Networks​ ​and​ ​the​ ​Brain
Connections​ ​in​ ​hierarchical​ ​networks​​ ​are​ ​organized​ ​in​ ​different​ ​levels.
1. Simple​ ​cells​:​ ​cells​ ​in​ ​the​ ​primary​ ​visual​ ​cortex​ ​that​ ​code​ ​for​ ​oriented​ ​line​ ​segments
2. Complex​ ​cells​:​ ​cells​ ​in​ ​the​ ​visual​ ​system​ ​that​ ​code​ ​for​ ​an​ ​oriented​ ​line​ ​segment
moving​ ​in​ ​a​ ​particular​ ​direction
3. Hypercomplex​ ​cells​:​ ​cells​ ​in​ ​the​ ​visual​ ​system​ ​that​ ​code​ ​for​ ​angles​ ​(two​ ​conjoined
oriented​ ​line​ ​segments)​ ​moving​ ​in​ ​a​ ​particular​ ​direction
If​ ​we​ ​extrapolate​ ​up​ ​in​ ​the​ ​hierarchy,​ ​we​ ​end​ ​up​ ​with​ ​cells​ ​in​ ​the​ ​highest​ ​layers​ ​that​ ​code​ ​for
large​ ​complex​ ​objects​ ​(“grandmother​ ​cells”).​ ​The​ ​hierarchy​ ​allows​ ​the​ ​visual​ ​system​ ​to
employ​ ​a​ ​“divide-and-conquer”​ ​strategy​ ​where​ ​it​ ​breaks​ ​down​ ​the​ ​complex​ ​visual​ ​image​ ​into
microscopic​ ​features​ ​and​ ​then​ ​assembles​ ​these​ ​features​ ​into​ ​parts​ ​and​ ​then​ ​wholes​ ​that​ ​can
be​ ​recognized.​ ​Communication​ ​between​ ​levels​ ​in​ ​hierarchies​ ​can​ ​allow​ ​for​ ​the​ ​resolution​ ​of
ambiguity​ ​in​ ​visual​ ​perception.​ ​Information​ ​in​ ​the​ ​visual​ ​system​ ​appears​ ​to​ ​travel​ ​in​ ​2
directions.​ ​It​ ​goes​ ​nog​ ​only​ ​in​ ​a​ ​feed-forward​ ​direction​ ​from​ ​the​ ​eye​ ​to​ ​the​ ​brain​ ​but​ ​also​ ​in​ ​a
feedback​ ​direction​ ​from​ ​higher​ ​brain​ ​centers​ ​to​ ​lower​ ​centers.

Small-World​ ​Networks:​​ ​We​ ​can​ ​define​ ​a​ ​small-world​ ​network​​ ​as​ ​any​ ​network​ ​where​ ​one
can​ ​get​ ​from​ ​any​ ​single​ ​point​ ​to​ ​any​ ​other​ ​point​ ​in​ ​only​ ​a​ ​small​ ​number​ ​of​ ​steps​ ​even​ ​though
the​ ​total​ ​number​ ​of​ ​elements​ ​may​ ​be​ ​exceedingly​ ​large.
Ordered​ ​and​ ​Random​ ​Connections:​ ​Random​ ​networks​​ ​are​ ​networks​ ​where​ ​the​ ​connections
are​ ​entirely​ ​local​ ​and​ ​can,​ ​therefore,​ ​be​ ​both​ ​short​ ​and​ ​long​ ​distance.​ ​In​ ​an​ o ​ rdered

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller KenzaS. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $5.46. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

50990 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$5.46  34x  sold
  • (7)
Add to cart
Added