Hetgeen aan te tonen/te definiëren opschrijven: 0.5pt
Definieer met behulp van de kleinste bovengrens eigenschap van R de functie f : R>0 → R
√
door x → 4 x + 1 (Hierbij alleen gebruik makende van de axioma’s van de reele getallen uit
H2.2 en de lemma’s van H2.3).
Definieer x4 : 0.75 pt.
Voor alle x ∈ R definiëren we x4 als (x2 )2 = (x · x) · (x · x) volgens 2.3.1(2).
Definieer Tr : 0.75 pt.
Neem nu een vaste r ∈ R>0 . Dan kunnen we de verzameling Tr definiëren
Tr = {x ∈ R≥0 | x4 < r}.
Merk op dat Tr niet leeg is: 0.75 pt.
De verzameling Tr is niet leeg aangezien 04 = (0 · 0) · (0 · 0) = 0 · 0 = 0 (Lemma 2.3.2(7)) en
0 < r (per definitie van r).
Laat zien dat Tr een bovengrens heeft (dit kan op meerdere manieren): 5 pt.
Laat x ∈ R met r + 1 < x.
Volgens de definitie van r geldt dat 0 < r en uit 2.2.1(l) dat 1 < r + 1 en dan geeft 2.3.3(2)
dat 1 < x maar ook 0 < r + 1, verder met 0 < 1 geeft 2.3.3(2) ook dat 0 < x.
Aangezien 0 ≤ (r + 1) < x geeft 2.3.3(11) dat (1 + r) · (1 + r) < x · x oftewel (1 + r)2 < x2 .
2.3.3(7) (met 1 + r ̸= 0) geeft dat 0 < (1 + r)2 dus er geldt weer 0 ≤ (1 + r)2 < x2 nogmaals
2.3.3(11) geeft dan (1 + r)2 · (1 + r)2 < x2 · x2 , dit is volgens onze definitie (met 2.3.1(2))
hetzelfde als (1 + r)2 · (1 + r)2 < x4 .
Er geldt 0 ≤ r < r + 1 en 0 ≤ 1 < r + 1, dus geeft 2.3.3(11) dat r · 1 < (r + 1) · (r + 1)
en met 2.2.1(g) dat r < (r + 1) · (r + 1) dus r < (r + 1)2 (2.3.1(2)). Op dezelfde manier
met 0 ≤ 1 < r + 1 geeft 2.3.3(11) dat 1 · 1 < (r + 1) · (r + 1) en met 2.2.1(g) weer dat
1
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller marjavdwind. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $5.89. You're not tied to anything after your purchase.