100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Summary Introduction to Multivariate Statistics - FEB22003X

Beoordeling
-
Verkocht
-
Pagina's
70
Geüpload op
24-10-2023
Geschreven in
2023/2024

Since the Introduction to Multivariate Statistics (FEB22003X) is an open book exam, this summary note can help a lot. It contains all the tutorial solutions + intuition behind the contents.

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Heel boek samengevat?
Ja
Geüpload op
24 oktober 2023
Aantal pagina's
70
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Multivariate Statistics

Hyunmin Hong

October 18, 2023




1

,Contents
1 Lecture 1 4
1.1 Distance & Statistical Distance . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.2 Statistical Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Lecture 2 6
2.1 Random Vectors & Random Matrices . . . . . . . . . . . . . . . . . . . . . . 6
2.2 Linear Combination of Random Vectors . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Univariate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Multivariate case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 Lecture 3 8
3.1 Geometry of a Sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.2 Geometric Interpretation of Average . . . . . . . . . . . . . . . . . . . . . . . 8
3.2.1 Deviation Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.3 Estimation of µ & Σ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

4 Lecture 4 12
4.1 Generalized Variance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.1 Generalized Variance in p dimensions . . . . . . . . . . . . . . . . . . 13
4.2 Geometric Interpretation of Statistical Distance . . . . . . . . . . . . . . . . . 14
4.3 Geometric Intuition of Covariance Matrix . . . . . . . . . . . . . . . . . . . . 15

5 Lecture 5 16
5.1 Multivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . . . . . . 16
5.1.1 Properties of Multivariate Normal Distribution . . . . . . . . . . . . . 17

6 Lecture 6 22
6.1 Estimation (by Maximum Likelihood) . . . . . . . . . . . . . . . . . . . . . . 22
6.1.1 Maximum Likelihood Estimates . . . . . . . . . . . . . . . . . . . . . . 22

7 Lecture 7 23
7.1 MLE of Multivariate Normal Distribution . . . . . . . . . . . . . . . . . . . . 23
7.1.1 Remarks about MLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
7.1.2 What is the distribution of µ̂M LE & Σ̂M LE ? . . . . . . . . . . . . . . 26

8 Lecture 8 27
8.1 Asymptotic Behavior of µ̂M LE & Σ̂M LE . . . . . . . . . . . . . . . . . . . . . 27
8.2 Data Inspection and Distributional Assumptions Check . . . . . . . . . . . . 27
8.2.1 Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
8.3 Multivariate Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.3.1 Univariate Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
8.3.2 Multivariate Tests (of location, µ) . . . . . . . . . . . . . . . . . . . . 29

9 Lecture 9 30
9.1 Invariance Property of Hotelling’s T 2 . . . . . . . . . . . . . . . . . . . . . . . 30
9.2 Likelihood Ratio Tests (LRT) . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.3 Equivalence of Hotelling’s T 2 & Wilks’ Lambda . . . . . . . . . . . . . . . . . 32

10 Lecture 10 33
10.1 Confidence Regions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33



2

, 10.2 Simultaneously Valid Confidence Intervals . . . . . . . . . . . . . . . . . . . . 33
10.2.1 Correction for Simultaneous Validity . . . . . . . . . . . . . . . . . . . 34
10.2.2 Simultaneously Valid Individual Confidence Intervals . . . . . . . . . . 34
10.3 Bonferroni Correction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.4 Asymptotic Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

11 Lecture 11 37
11.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 37
11.1.1 Properties & Interpretation of principal components . . . . . . . . . . 38

12 Lecture 12 40
12.1 Principal Component Analysis (continued) . . . . . . . . . . . . . . . . . . . . 40
12.1.1 Principal components are not scale invariant . . . . . . . . . . . . . . 40
12.1.2 Special Cases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
12.1.3 How many principal components to retain? . . . . . . . . . . . . . . . 42
12.2 Factor Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

13 Lecture 13 44
13.1 Factor Analysis (continued) . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
13.1.1 Estimation of L & Ψ . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
13.1.2 Estimation of Factor Scores . . . . . . . . . . . . . . . . . . . . . . . . 46
13.1.3 How to choose # of factors? . . . . . . . . . . . . . . . . . . . . . . . . 47




3

, 1 Lecture 1
1.1 Distance & Statistical Distance
Definition 1.1. Distance is a function defined on M .

d(x, y) : M × M → R

such that
a) d(x, y) ≥ 0, d(x, y) = 0 if x = y.
b) d(x, y) = d(y, x) (symmetry)
c) d(x, z) ≤ d(x, y) + d(y, z) (triangle inequality)
Example 1.1 (Euclidean distance).
p
d(x, y) = (x1 − y1 )2 + (x2 − y2 )2


Example 1.2 (Manhattan distance).

d(x, y) = |x1 − y1 | + |x2 − y2 |



1.2 Statistical Distance




Intuition. You might think that the red square is more extreme from the mean value
than blue square since it does not fall within the cloud of points. However, their Euclidean
distances are equal. Hence, we must take the variance into account when the cloud of
points is distributed in ellipse shape.




4
$7.20
Krijg toegang tot het volledige document:

100% tevredenheidsgarantie
Direct beschikbaar na je betaling
Lees online óf als PDF
Geen vaste maandelijkse kosten

Maak kennis met de verkoper
Seller avatar
hyunminhong

Maak kennis met de verkoper

Seller avatar
hyunminhong Erasmus Universiteit Rotterdam
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
0
Lid sinds
2 jaar
Aantal volgers
0
Documenten
1
Laatst verkocht
-

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo makkelijk kan het dus zijn.”

Alisha Student

Veelgestelde vragen