Chapter 2: The Simple Regression Model ........................................................................................................... 5
2.1 Scatterplots and conditional distributions ..................................................................................................... 5
2.1.1. Scatterplots .......................................................................................................................................... 5
2.1.2. A line through conditional means ........................................................................................................ 5
2.1.3 Errors of Estimate ................................................................................................................................. 5
2.2 The Simple regression model ........................................................................................................................ 5
2.2.1. The Regression Line ............................................................................................................................. 5
2.2.2. Variance, Covariance, and correlation ................................................................................................. 5
2.2.3 Finding the Regression Line .................................................................................................................. 6
2.2.4. Example computations......................................................................................................................... 6
2.2.5. Linear regression analysis by computer ............................................................................................... 6
2.3 The regression coefficient versus the correlation coefficient ......................................................................... 6
2.3.1. Properties of the Regression and Correlation Coefficients .................................................................. 6
2.3.2. Uses of the regression and correlation coefficients ............................................................................. 7
2.4 Residuals ....................................................................................................................................................... 7
2.4.1 The three components of Y ................................................................................................................... 7
2.4.2. Algebraic properties of residuals.......................................................................................................... 7
2.4.3. Residuals as Y adjusted for differences in X ......................................................................................... 7
2.4.4. Residual analysis .................................................................................................................................. 7
Chapter 3: Partial Relationship and the Multiple Regression Model .................................................................... 8
3.1. Regression analysis with more than one predictor variable ......................................................................... 8
3.1.1. An Example .......................................................................................................................................... 8
3.1.2. Regressors ............................................................................................................................................ 8
3.1.3. Models ................................................................................................................................................. 8
3.1.4. Representing a model geometrically .................................................................................................... 8
3.1.5. Model errors ........................................................................................................................................ 8
3.1.6. An alternative view of the model ......................................................................................................... 8
3.2. The Best-Fitting Model ................................................................................................................................. 8
3.2.1. Model estimation with Computer Software ......................................................................................... 8
3.2.2. Partial regression coefficients .............................................................................................................. 8
3.2.3. The regression constant ....................................................................................................................... 8
3.2.4. Problems with three or more regressors ............................................................................................. 8
3.2.5. The multiple correlation R .................................................................................................................... 8
3.3.3. The standardized regression coefficient .............................................................................................. 8
4.2 The ANOVA summary table........................................................................................................................... 8
4.2.1. Data = model + error ............................................................................................................................ 8
4.2.2. Total and regression sums of squares .................................................................................................. 8
4.2.3. Degrees of Freedom .................................................................................................................................. 9
4.2.4. Mean squares ......................................................................................................................................... 10
4.3 Inference about the multiple correlation..................................................................................................... 11
4.3.1 Biased and less biased estimation of Rsquared................................................................................... 11
4.2.3 Testing a hypothesis about tR ............................................................................................................. 11
How to… ......................................................................................................................................................... 16
Assumptions ..................................................................................................................................................... 16
Chapter 4: ...................................................................................................................................................... 18
4.1.2. Assumptions for Proper Inference ..................................................................................................... 18
4.4. The Distribution of and Inference about a partial regression coefficient .................................................. 18
4.4.1 Testing a Null hypothesis about Tb ..................................................................................................... 18
4.4.2 Interval Estimates for Tb ..................................................................................................................... 18
4.4.3 Factors Affecting the Standard Error of b ........................................................................................... 19
4.4.4 Tolerance ............................................................................................................................................ 19
4.7 Miscellaneous Issues in Inference ............................................................................................................... 21
4.7.1 How Great a Drawback is Collinearity? ............................................................................................... 21
4.7.2 Contradicting Inferences ..................................................................................................................... 21
4.7.3 Sample Size and Nonsignificant Covariates ........................................................................................ 21
4.7.4 Inference in Simple Regression (when k=1) ........................................................................................ 22
Chapter 5: Extending Regression Analysis Principles ...................................................................................... 22
5.1 Dichotomous regressors ............................................................................................................................. 22
5.1.1 Indicator or dummy variables ............................................................................................................. 22
5.1.2 Estimates of Y are Group Means......................................................................................................... 22
5.1.3. The regression coefficitien for an indicator is a Difference ................................................................ 22
5.1.4 A graphic representation .................................................................................................................... 22
5.1.5 A Caution About Standardized Regression Coefficients For Dichotomous Regressors ....................... 22
5.1.6 Artificial categorization of numerical variables................................................................................... 23
Chapter 7: ...................................................................................................................................................... 23
7.3 Selection Predictor Variables ...................................................................................................................... 23
7.3.1. Stepwise regression ........................................................................................................................... 23
7.3.2. All subsets regression ........................................................................................................................ 24
7.3.3 How Do Variable Selection Methods Perform? .................................................................................. 24
,Chapter 8: Assessing The Importance Of Regressors....................................................................................... 24
8.1 What Does It Mean For A Variable To Be Important? ................................................................................. 24
8.1.1. Variable Importance in Substantive or Applied Terms ....................................................................... 24
8.1.2. Variable Importance in Statistical Terms ............................................................................................ 24
8.3 Determining the Relative Importance of Regressors in a Single Regression Model .................................... 25
8.3.1 The Limitations of the Standardized Regression Coefficient .............................................................. 25
8.3.2 The Advantage of the Semipartial Correlation ................................................................................... 25
8.3.3. Some Equivalences among measures ................................................................................................ 25
8.3.4. Eta-Squared, Partial Eta-Squared, and Cohen’s f-Squared ................................................................. 26
8.3.5. Comparing Two Regression Coefficients in the Same Model ............................................................ 27
Chapter 9: Multicategorical Regressors .......................................................................................................... 28
9.1. Multicategorical variables as sets ............................................................................................................. 28
9.1.1. Indicator coding ................................................................................................................................. 28
9.1.2. Constructing Indicator Variables ........................................................................................................ 28
9.1.3. The Reference Category ..................................................................................................................... 28
9.1.4. Testing the equality of several means................................................................................................ 29
9.1.5. Parallels with Analysis of Variance ..................................................................................................... 29
9.1.6. Interpreting Estimated Y and the Regression Coefficients ................................................................. 29
9.2 Multicategorical regressors as or with covariates ...................................................................................... 29
9.2.1 Multicategorical Variables as Covariates ............................................................................................ 29
9.2.2 Comparing Groups and Statistical Control .......................................................................................... 29
9.2.3 Interpretation of regression coefficients ............................................................................................ 30
9.2.4. Adjusted Means ................................................................................................................................. 30
9.2.5. Parallels with ANCOVA ....................................................................................................................... 30
9.2.6. More Than One Covariate.................................................................................................................. 30
Chapter 16: Detecting and Managing Irregularities ........................................................................................ 30
16.1 Regression diagnostics ............................................................................................................................. 30
16.1.1. Shortcomings of eyeballing the Data ............................................................................................... 30
16.1.2. Types of Extreme Cases ................................................................................................................... 30
16.1.3 Quantifying leverage, distance, and influence .................................................................................. 30
Theory ............................................................................................................................................................ 39
Moderation:...................................................................................................................................................... 39
Significance Testing: ......................................................................................................................................... 39
Modeling with Interaction: ............................................................................................................................... 40
Moderation with the PROCESS function ......................................................................................................... 40
Moderation with the PROCESS function - Interpretation .................................................................................. 40
Moderation through hierarchical regression analysis ..................................................................................... 41
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller maraoltmans1. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $7.02. You're not tied to anything after your purchase.