100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Self-Study Questions Chapter 3 & 4 with Solutions Chris Brooks - 3rd Edition $3.23
Add to cart

Answers

Self-Study Questions Chapter 3 & 4 with Solutions Chris Brooks - 3rd Edition

7 reviews
 2997 views  12 purchases
  • Course
  • Institution
  • Book

Here are the exercises from Chapter 3 and 4 together with their solutions.

Preview 2 out of 10  pages

  • November 23, 2017
  • 10
  • 2017/2018
  • Answers
  • Unknown

7  reviews

review-writer-avatar

By: niekpoel • 4 year ago

review-writer-avatar

By: emefrancispuc • 4 year ago

review-writer-avatar

By: endrejoreite • 4 year ago

review-writer-avatar

By: louisabetter • 5 year ago

review-writer-avatar

By: 1234567893 • 5 year ago

review-writer-avatar

By: maher_kamra • 6 year ago

review-writer-avatar

By: nikitamacmurray • 6 year ago

avatar-seller
Self-study questions Chapter 3
1. (a) Why does OLS estimation involve taking vertical deviations of the points to the line rather than
horizontal distances?

(b) Why are the vertical distances squared before being added together?

(c) Why are the squares of the vertical distances taken rather than the absolute values?

1. (a) The use of vertical rather than horizontal distances relates to the idea that the explanatory
variable, x, is fixed in repeated samples, so what the model tries to do is to fit the most
appropriate value of y using the model for a given value of x. Taking horizontal distances would
have suggested that we had fixed the value of y and tried to find the appropriate values of x.



(b) When we calculate the deviations of the points, yt, from the fitted values, ŷt , some points
will lie above the line (yt > ŷt ) and some will lie below the line (yt < ŷt ). When we calculate
the residuals ( û t = yt – ŷt ), those corresponding to points above the line will be positive and
those below the line negative, so adding them would mean that they would largely cancel out.
In fact, we could fit an infinite number of lines with a zero average residual. By squaring the
residuals before summing them, we ensure that they all contribute to the measure of loss and
that they do not cancel. It is then possible to define unique (ordinary least squares) estimates
of the intercept and slope.


(c) Taking the absolute values of the residuals and minimising their sum would certainly also
get around the problem of positive and negative residuals cancelling. However, the absolute
value function is much harder to work with than a square. Squared terms are easy to
differentiate, so it is simple to find analytical formulae for the mean and the variance.



2. Explain, with the use of equations, the difference between the sample regression function and the
population regression function.



2. The population regression function (PRF) is a description of the model that is thought to be
generating the actual data and it represents the true relationship between the variables. The
population regression function is also known as the data generating process (DGP). The PRF
embodies the true values of  and , and for the bivariate model, could be expressed as



y t    xt  u t


Note that there is a disturbance term in this equation. In some textbooks, a distinction is drawn
between the PRF (the underlying true relationship between y and x) and the DGP (the process
describing the way that the actual observations on y come about).

, The sample regression function, SRF, is the relationship that has been estimated using the
sample observations, and is often written as



yˆ t  ˆ  ˆxt


Notice that there is no error or residual term in the equation for the SRF: all this equation
states is that given a particular value of x, multiplying it by  and adding  will give the
model fitted or expected value for y, denoted ŷ . It is also possible to write



y t  ˆ  ˆxt  uˆ t


This equation splits the observed value of y into two components: the fitted value from the
model, and a residual term. The SRF is used to infer likely values of the PRF. That is the
estimates  and  are constructed, for the sample data.




3. What is an estimator? Is the OLS estimator superior to all other estimators? Why or why not?

3. An estimator is simply a formula that is used to calculate the estimates, i.e. the parameters
that describe the relationship between two or more explanatory variables. There are an infinite
number of possible estimators; OLS is one choice that many people would consider a good one.
We can say that the OLS estimator is “best” – i.e. that it has the lowest variance among the
class of linear unbiased estimators. So it is optimal in the sense that no other linear, unbiased
estimator would have a smaller sampling variance. We could define an estimator with a lower
sampling variance than the OLS estimator, but it would either be non-linear or biased or both!
So there is a trade-off between bias and variance in the choice of the estimator.



4. What five assumptions are usually made about the unobservable error terms in the classical linear
regression model (CLRM)? Briefly explain the meaning of each. Why are these assumptions made?

4. A list of the assumptions of the classical linear regression model’s disturbance terms is given
in Box 2.3 on p.44 of the book.
We need to make the first four assumptions in order to prove that the ordinary least squares
estimators of  and  are “best”, that is to prove that they have minimum variance among the
class of linear unbiased estimators. The theorem that proves that OLS estimators are BLUE
(provided the assumptions are fulfilled) is known as the Gauss-Markov theorem. If these
assumptions are violated (which is dealt with in Chapter 4), then it may be that OLS estimators
are no longer unbiased or “efficient”. That is, they may be inaccurate or subject to fluctuations
between samples.

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller claudiughiuzan. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $3.23. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

56326 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$3.23  12x  sold
  • (7)
Add to cart
Added