Samenvatting minor PCM jaar 3 – Fysica van de MRI – Hanzehogeschool Groningen
19 views 1 purchase
Course
Institution
Hanzehogeschool Groningen (Hanze)
Samenvatting Minor PCM (PET/CT/MRI) jaar 3
Fysica van de MRI
Hanzehogeschool Groningen
Inclusief colleges, flitscolleges, literatuur.
Door Celine en Ilona
FLITSCOLLEGE SE, TSE EN GE ............................................................................................................................ 7
Precessiefrequentie – Frequentie waarmee proton om externe magneetveld draait.
Menselijk lichaam – groot deel bestaat uit H2O (60-70%), pasgeborenen (>75%) en ouderen (50%)
MAGNEET
• Atoomkernen met oneven aantal protonen
- Waterstofkernen → 1 proton
• Draaiend proton
- Kernspin/ protonspin → door de magnetische lading van de aarde gaat proton spinnen.
• Alle waterstofprotonen in ons lichaam worden aangestuurd door het magnetisch veld van de aarde.
• Draaiende lading
• Elektrische stroom
• Magnetisch veld
PROTON IN MAGNEETVELD
• Magneet in uitwendig magneetveld
- Kernen gaan zich richten: meer parallel dan anti-parallel, want:
▪ Parallel – lage energie
▪ Anti-parallel – hoge energie
• Parallel en anti-parallel heffen elkaar op → klein deel van de protonen zijn
bruikbaar.
• Het verschil tussen het aantal parallele en anti-parallele (veel energie)
protonen heet netto-magnetisatie (Mz)
• Wanneer er een RF-puls wordt uitgezonden met dezelfde frequentie als de precessiefrequentie,
ontstaat er resonantie. Bij een gelijke frequentie is er namelijk energieoverdracht.
• De longitudinale magnetisatie (Z: niet-meetbaar) wordt vervolgens na de RF-puls omgezet in
transversale magnetisatie (meetbaar).
3
,COÖRDINATENSTELSEL
• Z-as parallel → altijd in de richting
van 𝐵0
• X-as loodrecht
• Y-as loodrecht
- X en Y loodrecht richting
verschilt
• Magnetisch veld nu als vector
weergegeven.
NETTOMAGNETISATIE VECTOR (MZ)
RF-PULS
Effect 1 Longitudinale magnetisatie ↓
• Protonen gaan van
parallel naar anti-parallel
• Protonen in fase om z-as
→ excitatie
Effect 2 Synchronisatie → ontstaan van transversale magnetisatie
• RF-puls wordt losgelaten → Transversale magnetisatie gaat terug over naar
longitudinale magnetisatie → dit proces heet: T1-relaxatie
• T2-relaxatie → magnetisatie wordt uit elkaar geduwd (uit fase gaan in y-
richting)
RELAXATIES
• T1 en T2 relaxatie vinden tegelijk plaats
• Wanneer de 1e RF-puls wordt uitgezonden en naar transversaal gaat, en de RF-puls stopt, dan gaat
het weer terug van transversaal naar longitudinaal: ofwel T1-relaxatie.
• Naast dat de protonspins weer omhoog gaan naar longitudinaal, gaan ze ook uit elkaar omdat ze niet
dezelfde kernspins hebben → ze gaan uit-fase lopen: T2-relaxatie.
4
,LONGITUDINALE RELAXATIE
• RF-puls uit → LM ↑
• T1-curve
• Toename longitudinale magnetisatie
• T1 = relaxatietijd waarin 63% van LM is hersteld.
• Vet is veel sneller terug dan water. Vet heeft dus een lage
repetitietijd.
• Als je repetitietijd te hoog (> 1000 ms) wordt krijg je een T2.
TRANSVERSALE RELAXATIE
• RF-puls uit → TM ↓
• Uit fase
• Vet heeft een korte TR en water een lange TR → vet is eerder
hersteld.
• T2-curve: Afname transversale magnetisatie
• T2 = relaxatietijd waarin 37% van TM overgebleven is.
• T2-relaxatietijd is afhankelijk van de echotijd (TE).
VOORBEELDEN RELAXATIETIJDEN
• Water/vloeistoffen - Vet
• Lange T1 + lange T2 - Korte T1 + korte T2
• T1 tijd water = 2500 ms (63%) - T1 tijd vet = 200 ms (63%)
• T2 tijd water = 2500 ms (37%) - T2 tijd vet = 100 ms (37%)
5
,EXCITATIE/ TRANSVERSALE MAGNETISATIE
• Spins krijgen een hogere energie door de RF-puls. Na het loslaten willen ze echter weer terug naar
hun eigen energie. De overtollige energie zet zich om in warmte (Specific Absorption Rate; SAR in
Watt/Kg) en signaal.
• Er wordt gekeken naar de SAR, omdat een patiënt 1 graad opwarmt. → Er wordt daarom dus rekening
gehouden met patiënten met koorts. Ook wordt er rekening gehouden met metalen (stents, etc.)
• Spins krijgen een hogere energie door de RF-puls
- Overtollige energie
▪ Warmte (SAR = Specific Absorption Rate) → opwarming patiënt
o Hogere SAR is meer opwarming
▪ Signaal
• Proton heeft energie van zichzelf, wanneer je energie geeft en deze loslaat gaan de protonen terug
naar hun eigen energie → overtollige energie (warmte en signaal) blijft over en wordt losgelaten →
deze energie (signaal) wordt gemeten → afbeelding
SAMENVATTING
• Patiënt in magneet
- LM aanwezig, TM niet
• RF-puls
- LM verdwijnt, TM verschijnt
• RF uit
- LM afhankelijk van T1-relaxatietijd – TM afhankelijk van T2-relaxatietijd
• Afbeelding
MRI-CONTRASTEN
• T2-relaxatiecurve (verval TM) → lange TR, lange TE
• PD-contrast → lange TR, korte TE
• T1-relaxatiecurve (herstel LM) → korte TR, korte TE
6
, FLITSCOLLEGE SE, TSE EN GE
TR (REPETITIETIJD)
• Tijd tussen excitatiepuls in (90 graden RF-puls)
• TR wordt bepaald door laborant
• TR bepaalt de mate van LM herstel tussen excitatiepulsen
• Bij een matrix van 256 x 256 moeten 256 echo’s worden gemeten voor 1 plak/slice → 256 keer een
RF-puls geven om 256 echo’s op te wekken. Scantijd = 256 x TR
• Spin echo duurt lang omdat hier maar 1 echo wordt uitgelezen tussen de 180 graden refaseringspuls
en de volgende 90 graden puls →
oplossing TSE (turbo spin echo)
TE (ECHOTIJD
• Tijd tussen excitatiepuls en de echo
(signaalmeting)
• TE wordt bepaald door laborant
• TE bepaalt mate van afname TM tijdens de meting
• Bij een matrix 256 x 256 moeten 256 echo’s worden gemeten voor 1 plak/slice
SPIN ECHO TECHNIEK (SE)
• Exciterende 90 graden puls (van LM → TM)
• Maakt gebruik van één 180 graden refocusseerpuls/refaserendepuls (halverwege echotijd)
• Echo (MRI-signaal) → meten met ontvangstspoel
• Hoeveelheid gemeten echo’s is afhankelijk van de matrix
• Uit fase o.i.v. veldinhomogeniteiten
• Geen netto trans. magn.
• Geen meting
180 GRADEN REFOCUSSEERPULS
• 90 graden puls:
o Magnetisatie naar het X-Y vlak geflipt
o Protonen gaan in fase draaien!
o Protonen zullen kort na uitschakeling RF-puls gaan defaseren (spin-spin relaxatie +
veldinhomogeniteiten T2*; T2-relaxatie) → signaal ↓
• 180 graden puls:
o Zorgt voor refasering waardoor het signaal weer maximaal wordt → compensatie voor
veldinhomogeniteiten T* effecten ↓ (niet voor spin-spin interactie)
• TE/2: 180 graden puls → uitschakelen meting defasering door veldinhomogeniteiten.
• Echo: signaal
7
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller celinedejongx. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $5.52. You're not tied to anything after your purchase.