100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Advanced Cognitive Neurobiology and Clinical Neurophysiology $8.08   Add to cart

Class notes

Advanced Cognitive Neurobiology and Clinical Neurophysiology

 5 views  1 purchase
  • Course
  • Institution

Lecture notes of 79 pages for the course at UvA

Preview 4 out of 79  pages

  • November 8, 2023
  • 79
  • 2022/2023
  • Class notes
  • Bosman, pennartz, meijas, olsece, suzuki, vriend,
  • All classes
avatar-seller
Advanced Cognitive Neurobiology and Clinical Neurophysiology



Lecture 1: Signaling within and between neurons, Bosman 2

Lecture 2: Extracellular ensemble recordings and population coding, Pennartz 6

Homework: Extracellular ensemble recordings and population coding 10

Lecture 3: Computational models I, Mejias 13

Homework: Computational models I 16

Lecture 4: Single unit recordings, Olsece 18

Lecture 5: Extracellular recordings: local field potentials, Bosman 23

Homework: Extracellular recordings: local field potentials 28

Lecture 6: Optogenetics, Olsece 32

Homework: Optogenetics 36

Lecture 7: Brain rhythms and coherence, Bosman 38

Lecture 8: Multisensory integration, Olsece 45

Homework: Multisensory integration 49

Lecture 9: Computational models II, Mejias 51

Homework: Computational models II 54

Lecture 10: Basics of consciousness, Pennartz 56

Homework: Basics of consciousness 59

Lecture 11: Human invasive electrophysiology, Bosman 61

Homework: Human invasive electrophysiology 64

Lecture 12: Mass-neural dynamics in health and disease, Linkenkaer-Hansen 67

Lecture 13: Sleep, dreaming and replay, Pennartz 68

Practicum: AMC - Pathology 72

Practicum: ratten- en schapenbrein 73

Lecture 14: Brain Computer Interfaces, Aarnoutse 74

Lecture 15: Two-photon imaging, Suzuki 76

Lecture 16: Neuropsychology of Parkinson's disease, Vriend 76




1

,Lecture 1: Signaling within and between neurons, Bosman

brain → systems → maps → networks → neurons → synapses → molecules

information by certain techniques is limited by time and space → overview of techniques is
needed to see what happens in the brain in different times and spaces

Cajal: neuron drawing, a neuron is a unity
→ information can flow between neurons
→ with this the brain can be studied as a network

timeline:
- single cell recordings were very important for Cajal in the beginning
- now we see more multicellular recordings, because we see things as a network
- 1873: Golgi method invention
- 1888: neuron doctrine
- 1929: development of EEG

Membrane potential (how does the neuron work)
- Hodgkin and Huxley
- squid, because of it’s long axons

what causes a membrane potential:
1. Separation between ions in and outside the cell
2. Excess negative charge inside the cell at rest
3. The ion fluxes across the membrane
4. The lipid bilayer structure of the membrane

- Membranes are lipid bilayers
- Membrane potential arises from a separation of positive and negative charges
across the cell membrane
- Excess charges are concentrated directly at the membrane (in- and outside)
- Each excess is only a tiny fraction of the total number of ions in/outside the cell
- More potassium (K) inside the cell, more sodium (Na) outside
- negative charges inside the cell
- positive charges outside the cell
- membrane potential is used for speed in the communication; rapid transport of
signals through CNS → you only have to open the gates to use the ion gradients.

- membrane potential: Vm = Vin - Vout
- resting membrane potential: -85 mV tot -60mV
- Polarization: potential at which Vin –Vout is not zero.
- Depolarization: loss of (negative) polarization, so Vm moves towards 0 mV
- Hyperpolarization: reinforced (negative)polarization, so Vm moves further away from
0 mV, becomes more negative than before
- Convention: direction of current flow is defined as direction of net movement of
positive charge.



2

,Ion channels
Ion channels are the gateway through the membrane (because membranes are lipid
bilayers, they are not permeable to molecules or water)

- have a selectivity for size and binding site
- open and close in response to electrical, mechanical
and chemical signals
- is very rapid
- is passive
- direction and magnitude of flux are dependent on
- electrostatic forces (across membrane)
- concentration difference (in vs outside cell)
- ion channels can be:
- open
- closed
- inactive / refractory: is open, but blocked. A way to control channels

different types
1. ligand gated: sensitive to chemical substance, e.g. transmitter or olfactory stimulus
2. phosphorylation gated: ATP needed
3. voltage gated: sensitive to transmembrane voltage
4. mechanically gated: sensitive to pressure or stretch / volume change
5. resting channels: non-gated, normally open as leak current to keep the neuron at a
resting membrane potential


Equilibrium potential
Equilibrium potential: potential at which chemical driving force == electrical driving force →
no net flux of ions (Nernst equation)




Resting potential is determined by a weighted sum of the equilibrium potentials, where the
weight is determined by the relative permeability of the ion




3

, Steady-state condition with passive current flow balanced by active ion transport by the
Na+/K+ pump.
steady-state: no net current flow into or from cell (but ATP needed to maintain) → stable
membrane potential

Local signalling

3 passive electrical properties:
1. input resistance
a. change in electric current and transmembrane voltage
2. membrane capacitance
a. Phospholipid bilayer has the ability to (transiently) “store” electrical charges
depending on membrane potential.
3. axial resistance
a. in cytoplasm

myelination: glial cell membranes are tightly wrapped around axons, the thicker the
insulation, the lower the capacitance → faster spreading to neighboring regions

node of ranvier: amount of current flowing down axon from axon hillock is not enough to
discharge capacitance along the entire length of the axon → nodes of Ranvier prevent the
action potential from dying out.

Action potentials

Time course of events:
1) Initial depolarization needed
2) Na+ channels open
3) Further depolarization of membrane
4) More Na+ channels open → more depolarization (positive feedback loop, regenerative)
5) K+ channels start to open: repolarizing effect
6) Na+ channels inactivate
7) K+ conductance outlasts Na+ conductance: hyperpolarization
8) Refractory period → impossible or very difficult to excite membrane
- two things need to happen at the same time to reach hyperpolarization;
- sodium (Na) channels close
- potassium (K) channels open
K+ conductance involved in AP:
- Grows with stronger depolarization
- Does not inactivate


4

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller isisvanechtelt. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $8.08. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

67096 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$8.08  1x  sold
  • (0)
  Add to cart