100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Repeated Measures lectures notes $10.77   Add to cart

Class notes

Repeated Measures lectures notes

 14 views  0 purchase
  • Course
  • Institution

This document entails elaborative lecture notes of the course Repeated Measures, for the masters Clinical Forensic Psychology and Victimology, Klinische Neuropsychologie, Clinical Neuropsychology en Klinische Psychologie.

Preview 4 out of 75  pages

  • November 9, 2023
  • 75
  • 2023/2024
  • Class notes
  • M.e. timmerman
  • All classes
avatar-seller
Repeated Measures lecture notes
Lecture 1 Review of ANOVA
Univariate = 1 dependent variable (DV)

Multivariate = multiple DVs

Lectures are most important! Background is in book, still important.



Recall ANOVA

Between-factor one-way ANOVA:

Purpose: Comparison of group means (independent populations).

Factor, e.g., gender, for females and males.

One-way means 1 factor like gender, or intervention (group with intervention, and group without), or
educational level with three levels (low, average, high).

→ two way is with two factors, e.g., gender and educational level in the design. A participant is
always put in a group. Between subject-variable, e.g., you a female of male.

Within-variable: pops up in different moments/categories, e.g., within factor is time, before and after
treatment.

To wat extent do the means differ, e.g., between high and low education.




µj = population mean of the group

 = subject-specific residual



SS = the variability in sum of scores.

SS partition: SST = SSG + SSE

SSG – between groups, explained part

SSE – within groups, unexplained part

F = MSG/MSE =




95% confidence interval (CI) = 95% sure that the population mean will fall between the sample mean
and 95% CI interval.

SS/df = means square (MS)

,F = mean square / residual

Example one-way ANOVA

- Study on the effects of instructional material on how well students learn statistical concepts.
- Variables:
o DV continuous: Y (test scores on statistical concepts)
o IV discrete: group (2) (instructional conditions)
- Perform an univariate ANOVA:
o Test whether the two population means are equal
o ANOVA table:
SS, df, MS, F, p-value, Partial eta squared (.01: Small; .06: Medium; .14: Large effect
size)

Samples scores on Y per group + output




Significance test and effect size

p > .05 HO = not rejected, no significant difference.

Small sample = lower power, could give larger effect size

- P-value: indicates the significance of a factor.
o What is the probability of these samples means or more extreme if the population
means would be equal in the population?
- Effect size: indicates the size of the effect
o In ANOVA: How large is the difference between the groups in the population?
o Population means relative to within group variable. How much do groups differ from
each other? The further apart the normal distributions are, the bigger the effect size.
o Effect size measures in ANOVA
▪ ɳ2 = SSeffect/SStotal: proportion of variance explained of effect
▪ Partial ɳ2: proportion of variance explained, after accounting for variance
explained by possible other factors
▪ And other measures

,Follow-up on significant ANOVA

What to do if the omnibus F test rejects H0?

- Evidence that at least 1 group differs from the other groups, based on one or more effects
(main/interaction). One group significantly differs, where is the difference?
Via:
o Visual inspection
o (Muliple) comparisons (tests or CI’s)
1. Planned → contrasts
2. Post hoc comparisons



Assumptions ANOVA

1. Independent observations
2. Within each group the scores are normally distributed
a. Check per group via QQ-plot or test on skewness and kurtosis
3. The variances of the scores are equal across all groups
a. Check sample variances between groups: max/min <2 is ok
b. Levene’s test: be cautious, use of significant test to confirm H0. → quite dangerous



Experimental designs

Experiments have 3 characteristics:

1. Manipulation of treatment levels:
– researcher controls nature and timing of each treatment level
2. Random assignment of cases to levels (groups):
– to remove bias
– average out differences among cases
3. Control of extraneous variables:
– only treatment level changes during experiment

Observational: apparently groups differ from each other.

Experimental: you can infer causality.

How to control extraneous variables:

- Hold them constant
- Counter effect their effects
- Turn them into an extra factor

When all 3 characteristics hold (i.e., manipulation, random assignment, control), differences in scores
are attributed to differences in treatment levels.

Proof of causal relationship? → still hazardous until study is successfully replicated

, Between subject design

Differences due to treatments are tested between groups of subjects: Different cases in every level.

Designs:

- Experimental: Cases are randomly assigned to
treatment levels
- Nonexperimental (also denoted: correlational
or observational): No random assignment
(e.g., gender; patient/control)
- Factorial designs:
o Treatment levels are determined by
more than one factor
o Main effects of each factor, and interaction(s)




Factorial ANOVA

- Usually more than one factor (defining different groups)
o For two factors: then a x b groups, and main effects and interaction effects can be
tested. → is denoted: two-way ANOVA.
▪ Main effects are best interpreted when there is NO interactions between
variables.
- Why several factors?
o Statistical reason: Reduction of error variance
o Substantive reason: Study interplay between variables

Source of variance

Identifying source of variance

1. List each factor as source
2. Examine each combination of factors: complete crossed → include interactions as source
3. When effect is repeated, with different instances, at every level or another factor → include
factor as source
Main effects are best interpreted when there is NO interaction between variables.

Example:

- Factor A, factor B, and subjects S
- A and B completely crossed: A, B, AB, and S
- Different S, at each level of A and B: A, B, AB, and S(AB)

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller jlmkuipers. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $10.77. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

73918 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$10.77
  • (0)
  Add to cart