Summary - Interactive Data
Transformation - Master Information
Management
Sven van Alem
, Table of contents
1. Lecture 1: DBMS & Relational & SQL............................................................................................... 3
1.1 Database Management Systems ............................................................................................. 3
1.2 Relational Data Model ............................................................................................................. 4
1.3 Single table queries using SQL ................................................................................................. 5
2. Lecture 2: Entity Relationship, and translating from natural .......................................................... 6
2.1 Entity-Relationship Model ....................................................................................................... 6
2.2 Business concepts.................................................................................................................... 6
2.3 Relationships, degrees, and cardinalities ................................................................................ 8
2.4 Generalization and Specialization ........................................................................................... 9
3. Lecture 3: Translating ERD to DB schema & Database Normalization .......................................... 11
3.1 Relational schema ................................................................................................................. 11
3.2 Transforming ERD to Relational schema ............................................................................... 11
3.3 Data Normalization ............................................................................................................... 14
4. Lecture 4: Evolution of data management, big data, and data intensive systems ....................... 16
4.1 Evolution of Data management ............................................................................................ 16
4.2 Big Data Analytics .................................................................................................................. 16
4.3 Reasons for going beyond traditional RDBMS ...................................................................... 17
4.4 Big data .................................................................................................................................. 18
4.5 Storage layer (HDFS) .............................................................................................................. 19
4.6 Computation layer (MapReduce) .......................................................................................... 20
5. Lecture 5: The Spark ecosystem, RDDs, Programming model, and PySpark ................................ 23
5.1 Data flow models................................................................................................................... 23
5.2 Lambda expressions: preliminary material ........................................................................... 23
5.3 Apache spark architecture .................................................................................................... 24
5.4 The programming model: why spark?................................................................................... 25
Lecture 6: Data transformations with SQL, entity recognition, data cleaning tools, etc. ..................... 28
6.1 Processing multiple tables ..................................................................................................... 28
6.2 Views ..................................................................................................................................... 29
6.3 Functions ............................................................................................................................... 29
6.4 Creating & Populating ........................................................................................................... 30
6.5 Data from Websites, Integration & Cleaning, Entity Extraction & resolution....................... 31
2
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller svenvanalem. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $6.43. You're not tied to anything after your purchase.