Samenvatting van de cursus Gaschromatografie (GC) en High performance liquid chromatografie (HPLC) op Avans Hogeschool. Voor zowel Chemie als Biomedisch, richtingen FLO, BML en BMO. Leerjaar 2. De samenvatting is gemaakt van de presentaties van de lessen en het boek Quantitative Chemical Analyse (9...
Summary Pharmaceutical Analysis and Instrumental Analysis
All for this textbook (2)
Written for
Avans Hogeschool (Avans)
Chemie
Cursus Gaschromatografie en HPLC
All documents for this subject (2)
12
reviews
By: jaimydemoor • 5 months ago
By: femkeherrings1 • 2 year ago
By: marcopolo_tae • 3 year ago
By: miekevandriel • 3 year ago
By: naaginbrinda • 4 year ago
By: mandyspaapen • 4 year ago
By: nikkiintgroen • 4 year ago
Show more reviews
Seller
Follow
joscarouwx
Reviews received
Content preview
Josca Rouw
GC en HPLC-samenvatting
Les 1 Algemene chromatografie en stukje HPLC:
Een praktijkvoorbeeld is de babysterfte in China in 2008. De melamine werd in melk aangetoond door de
hoeveelheid stikstof (eiwitten) de concentratie wordt bepaald.
Belangrijke begrippen:
Solute = opgeloste component
Solvent = oplosmiddel
Solution = oplossing
Elution/Elutie = vloeistof door een kolom leiden
Eluent = vloeistof die de kolom in gaat waarmee geëlueerd wordt
Eluate = vloeistof die de kolom uit komt dat wat geëlueerd is
Retention time = time needed for a solute to be eluted
Chromatogram:
- Op de x-as de tijd (retentietijd)
- Op de y-as het signaal van de detector (picampere of mili abosorptie units)
- Pieken van verschillende componenten
De retentietijd kan netto of bruto zijn. De bruto retentietijd (Tr) is wat men waarneemt op
de x-as dus de tijd wanneer het component uit de kolom komt. De netto retentietijd (Tr’) is
de bruto retentietijd min de retentietijd van de eerste component. Let op bij netto is het
altijd alleen min de retentietijd van de eerste piek!
De componenten in een mengsel verdelen zich tussen de mobiele (de beweegbare) fase
en de stationaire (stilstaande) fase. Retentiemechanisme = de manier waarop de stof
de vertraging krijgt ofwel waardoor de scheiding plaatsvindt. De vertraging komt door dat de stof blijft plakken in
de kolom. Er zijn 5 retentiemechanismen:
- Adsorptie blijven plakken aan de stationaire fase (vast). Een voorbeeld is een GC.
- Verdeling de componenten gaan zich verdelen tussen de mobiele en
de stationaire fase (vloeibare). Een voorbeeld is een C18 kolom bij
HPLC maar kan ook bij GC.
- Moleculaire zeefwerking de stationaire fase is een soort zeef
waardoor kleine deeltjes erin vallen. Er wordt gescheiden op grootte,
klein duurt lang en groot gaat sneller. Een voorbeeld is het scheiden
van eiwitten.
- Elektrostatische interactie Plus en min trekken elkaar aan. De
stationaire is plus of min geladen waardoor de componenten wel of niet
blijven plakken.
- Biologische affiniteit De stationaire fase heeft een specifieke
receptor (bijvoorbeeld een antigeen) waaraan de componenten wel of
niet binden.
De namen van de chromatografie worden benoemd aan de aard van de fasen.
Bijvoorbeeld de mobiele fase is een vloeistof en de stationaire fase is vast dan
is het een vloeistof-vast chromatografie (lsc). De mobiele fase kan een gas of
een vloeistof zijn. De stationaire fase kan een vloeistof of vast zijn.
Soorten chromatografie:
- Vlakke chromatografie
o TLC
- Kolom chromatografie
o GC
o HPLC
o IEX
o SEC
HPLC:
Blokschema van de HPLC: oplosmiddel, pomp, injector, kolom en de
detector.
- Oplosmiddel:
Eluens = oplosmiddel. Het is heel zuiver en geen verontreinigen (ook
geen luchtbellen). Het wordt ontgast omdat het anders heeft invloed
op de pomp en op de detectie. Bij zuurstof in de pomp gaat het kapot waardoor de mobiele fase niet constant is
dus een foute detectie ontstaat. Zuurstof heeft ook invloed op fluorescentie en UV. Het kan op verschillende
,Josca Rouw
manieren ontgast worden: door filteren/vacuüm, trilbad, helium door leiden, on line door vacuüm en door
verwarmen/refluxen. Het laatste is de meest efficiënte methode.
- Pomp:
Er wordt een zuiger of een plunjerpomp gebruikt. Vaak worden ze in serie gebruikt waardoor een stabieler debiet
(hoeveelheid vloeistof per tijdseenheid) komt. De shockjes worden nu gecorrigeerd.
Er kan een solvent manager gebruikt: vloeistoffen worden eerst gemengd en dan door de pomp op druk gebracht
lagedruk menging. Het voordeel is dat er meer dan 2 solvents kan worden gebruikt en het goedkoper is. Er kan
ook een gradiëntsysteem worden gebruikt: vloeistoffen worden eerst door aparte pompen op druk gebracht en
dan gemengd hogedruk menging. Het voordeel is een kleiner dood volume.
Het dood volume is al het volume tussen de injector en de detector maar niet de kolom. De dode tijd (T0) kan
worden bepaald met de kolom aanwezig. We spreken dan van de Tm = tijd van het onvertraagd component.
- Injector:
Er wordt een Prefilter gebruikt. Bij injecteren in een HPLC-systeem de oplossing vooraf filtreren. De injector moet
aan een aantal eisen voldoen, zoals tegen een hogere druk dan 400 bar. Door de injector op de HPLC is er een
precieze hoeveelheid van het monster aanwezig. De loop wordt eerst gevuld met een stompe 20 microliter naald
en daarna omgedraaid naar de kolom. Belangrijke eisen aan de injector zijn: drukbestendig (>400 bar), chemisch
inert, geen dood volume, variabele monsterhoeveelheid (5-100 μl), herhaalbaar/reproduceerbaar, kleine
injectiebreedte, lange levensduur, automatiseren.
- Kolom:
De kolom die daadwerkelijk scheidt is de analytische kolom. Er wordt vaak ook een voorkolom gebruikt. Dit wordt
gedaan want als er een te sterk monster wordt geïnjecteerd (of onzuiverheden in het monster zitten) vangt de
voorkolom het op. De voorkolom vervangen is goedkoper dan de analytische kolom. Een nadeel van een
voorkolom is een groter doodvolume. Resolutie is het scheidend vermogen. Hoe lager de resolutie, hoe breder de
piek. Een HPLC-kolom kan variëren in de lengte, materiaal, diameter, deeltjesgrootte en oppervlakte van de
deeltjes. De levensduur van de kolom kan worden verlengd door de druk langzaam op te voeren, monsters te
filteren, gebruik maken van een voorkolom, pH tussen 3 en 7 te houden, eluens filteren, kolom spoelen met
eluens en niet laten vallen of stoten. Het kan gerepareerd worden door de kolom om te draaien, een ander inlet-
filter te plaatsen of het doodvolume opvullen.
De kolomoven wordt gebruikt om de temperatuur constant te houden. Hierdoor is de scheiding consistent.
- Detector:
Er zijn algemene eisen van een detector. Er kan een universele of een specifieke detector worden gebruikt.
Daarnaast moet de gevoeligheid hoog zijn (kleine concentraties meten) en het ruisniveau laag zijn. Een instelbare
selectiviteit, groot lineair gebied, stabiel, eenvoudig te bedienen, minimale piekverbreding en een hoge
responsietijd. Ook is de prijs een belangrijke rol.
Een UV-detector is vrij universeel. Er moet wel een kwartsglas worden gebruikt. Een verbeterende versie hiervan
is de DAD-detector. DAD staat voor diode array detector. Daarnaast kan ook een fluoroscentie detector worden
gebruikt. Maar heel weinig stoffen laten fluoroscentie toe. De elektronen veranderen van toestand.
Vaak worden er MS-detectoren toegevoegd. Het zijn massadetectoren. Ze maken bij iedere piek een
massaspectrum.
Hoofdstuk 25 paragraaf 2:
Een standaard pomp in de HPLC heeft een druk tot 400 bar en een flow van 10 ml/min.
Gradiënten kunnen op twee manieren worden geleverd. Door een hogedruk mixing pomp waarbij de twee
oplosmiddelen worden geleverd door twee verschillende pompen. Het kan ook door een lagedruk mixing pomp
waarbij er tot 4 verschillende oplosmiddelen kunnen worden geleverd. De lagedruk pomp is goedkoper, maar
heeft een groter verblijfvolume.
Het injectievolume is vast aan de loop. Deze kan variëren van 2 tot 1000 microliter. Er wordt een stompe
injectienaald gebruikt waarbij de loop wordt gevuld en is ‘geload’. Daarna wordt de knop 60 graden gedraaid
waardoor het monster naar de kolom gaat.
Een ideale detector is gevoelig voor lage concentraties, geeft een lineaire reactie en verbreedt de pieken niet.
Daarnaast moet de detector niet gevoelig zijn voor temperatuursverandering en samenstelling van het
oplosmiddel. Bubbels in de detector zorgt voor problemen dus kan er terugdruk worden gebruikt. Er zijn veel
verschillende detectoren:
- Spectrofotometrische-detector: gebruik van wet van Lambert-Beer.
, Josca Rouw
o UV-detector: deze detector wordt het meeste gebruikt bij de HPLC omdat de meeste stoffen
absorberen bij UV-licht. Er wordt gebruik gemaakt van een flow cell. De meeste zijn variabele
golflengte (VWD) detectors waarbij een deutrium of xenon lampen worden gebruikt met een
monochromator. Boven de 210 nm kunnen stoffen worden gemeten met een absorptie.
Hieronder wordt gemeten in ultraviolet. De detector wordt gebruikt voor stoffen die niet
absorberen en kan goed worden gebruikt bij gradiëntelutie.
o Photo-diode array detector (PDA): maakt gebruik van het spectrum. Waardoor ieder element
een piek geeft (spectrum). Er kan dus bij elke golflengte worden gemeten. Het
signaal/ruisverhouding is wel lager waardoor er niet bij hele lage concentraties kan worden
gemeten.
o Fluorescentie detectoren meten de fluorescentie wanneer er een laser op de stoffen schijnt.
De detector is veel gevoeliger dand e UV-detector maar kan alleen gebruikt worden bij
fluorescerende stoffen. Om de detector toch universeler te maken, kunnen de stoffen worden
gebonden aan een analyt = derivatisering.
- Verdampende light-scattering detector:
De detector reageert op iedere stof die minder vluchtiger is dan de mobiele fase. Het mengsel uit de
kolom wordt gemengd met stikstof en wordt in de detector gedruppeld. De druppels worden verwarmd
en gemeten door een lichtbron. De weerkaatsing van het licht wordt gemeten. De grootte van de
druppels is verschillend, dus ook de intensiteit van de weerkaatsing waardoor het resulteert in een
chromatogram. Het is dus afhankelijk van het gewicht van de stof (grootte van de druppel).
Gradiëntelutie is mogelijk. Doordat de mobiele fase wordt gebruikt, zijn er geen elutiepieken op het
chromatogram. De elutiepieken op het chromatogram komen door een afwijking van de mobiele fase en
het oplosmiddel van het monster. Hierdoor ontstaat Tm (dode tijd = mobiele fase door kolom). De
detector wordt gebruikt voor stoffen die niet absorberen boven de 200nm.
- Geladen Aerosol detector (CAD):
Het is een bijna universele detector door het gewicht van de niet vluchtige stoffen. Het is makkelijk om
bepaalde stoffen in een mengsel te meten omdat het relatieve gewicht in het mengsel vrijwel gelijk is
aan de piek op het chromatogram. Het zwaarste component geeft dus de grootste piek. Het mengsel uit
de kolom wordt gemengd met stikstofgas. De fijne deeltjes nevel gaan naar de droogbuis en de grote
deeltjes vallen in de afvoer. De stikstof wordt gebonden aan de aerosol door een geladen lading door de
Pt naald. De geladen stikstof wordt overgegeven aan de aerosol deeltjes. De deeltjes worden gemeten
in een elektrometer. Het kan gebruikt worden bij een gradiëntelutie.
- Elektrochemische detector:
Deze detector kan worden gebruikt bij stoffen die kunnen oxideren of reduceren. Er worden elektroden
gebruikt zoals koolstof, goud, zilver en platina. Er worden polaire oplossingen met elektrolyten gebruikt
waarbij zuurstof is verwijderd. De detector is gevoelig voor temperatuur en flow veranderingen.
- Brekingsindex detector (RI):
De detector reageert op bijna elke stof maar de detectielimiet is 1000x slechter dan een UV-detector. Dit
komt omdat de detector is gevoelig voor temperatuur, druk en flow veranderingen. De detector bestaat
uit 2 delen: de ene kant is pure mobiele fase en de andere kant bevat de mobiele fase en het monster.
De optische eigenschappen verschillen daarom in deze compartimenten. Het zichtbare licht wordt
gefilterd waardoor er geen infrarode staling is die het monster verwarmd. Het licht gaat door de cel en
gaat naar de photodiode array. Wanneer er een monster in de mobiele fase aanwezig is wijkt het signaal
af, het licht wordt in een ander hoek teruggekaatst. Er kan geen gradiëntelutie worden gebruikt omdat
we het monster en de referentie niet kunnen evenaren terwijl de samenstelling van het oplosmiddel
verandert.
Een massaspectrometer geeft de verdeling van de massa-ladingverhoudingen van de deeltjes die op een
bepaald moment aanwezig zijn in de mobiele fase. Een massaspectrometer kan in combinatie met
vloeistofchromatografie (LC-MS) worden gebruikt. Hoewel vloeistofchromatografie mengsels scheidt met
meerdere componenten, biedt massaspectrometrie structurele identiteit van de afzonderlijke componenten met
een hoge moleculaire specificiteit en detectiegevoeligheid. Deze techniek kan worden gebruikt om biochemische,
organische en anorganische verbindingen te analyseren die vaak worden aangetroffen in complexe monsters van
omgevings- en biologische oorsprong. Daarom kan LC-MS worden toegepast in een breed scala van sectoren.
Les 2 Gaschromatografie:
Gaschromatografie:
GSC = gas-solid chromatography, het retentiemechanisme is adsorptie.
GLC = gas-liquid chromatography, het retentiemechanisme is verdeling.
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller joscarouwx. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $4.81. You're not tied to anything after your purchase.