100% de satisfacción garantizada Inmediatamente disponible después del pago Tanto en línea como en PDF No estas atado a nada
logo-home
Samenvatting Wiskunde I $5.24
Añadir al carrito

Resumen

Samenvatting Wiskunde I

7 reseñas
 20 veces vendidas
  • Grado
  • Institución

Samenvatting / Formularium met alle formules extra uitleg te kennen voor het examen Wiskunde I voor TEW gegeven door prof. C. BUTS aan de VUB.

Última actualización de este documento: 7 año hace

Vista previa 5 fuera de 17  páginas

  • 9 de enero de 2018
  • 17 de enero de 2018
  • 17
  • 2018/2019
  • Resumen

7  reseñas

review-writer-avatar

Por: walidamhamdipro • 5 año hace

review-writer-avatar

Por: kezbanalhan36 • 5 año hace

review-writer-avatar

Por: anasstouzli • 6 año hace

review-writer-avatar

Por: cesaragneessens • 6 año hace

review-writer-avatar

Por: edeluyck • 6 año hace

review-writer-avatar

Por: gunduzeren19 • 6 año hace

review-writer-avatar

Por: niclemutan • 7 año hace

avatar-seller
Hoofdstuk 1




1

, Hoofdstuk 1



Formularium
Merkwaardige producten
(a + b)(a – b) = a² - b²

(a ± b)² = a² ± 2ab + b²

(a ± b)³ = a³ ± 3a²b + 3ab² ± b³




Functies

ax = ex.ln a
ln 𝑥
eln x = x Loga x = ln 𝑎
ln ex = x Loga (xy) = loga x + loga y
ln x = loge x 𝑥
Loga 𝑦 = loga x – loga y
loga 1 = 0
Loga xy = y.loga x
loga a = 1
Loga ax = x
log 𝑏 𝑋
loga x =
log 𝑏 𝐴




Ontbinden in factoren

ax² + bx + c = a(x – x1)(x – x2)

Breuken op 1 breuk zetten:
𝑥 𝑦 𝑥 𝑥 𝑦 𝑦 𝑥 2 + 𝑦²
𝑦
+𝑥 =𝑦.𝑥+𝑥.𝑦= 𝑥𝑦




2

, Hoofdstuk 1


Goniometrische formules

Goniometrische grondformules:



Cos² x + sin² x = 1
1
1 + tan² x = 𝑐𝑜𝑠2 𝑥
1
Cot² x + 1 =
𝑠𝑖𝑛2 𝑥




Goniometrische verdubbelingsformules:



sin (2x) = 2 sin x . cos x en cos (2x) = cos² x – sin² x




1+cos 2𝑥 1−cos 2𝑥
cos² x = 2
en sin² x = 2




Hieruit volgt:



 2 cos2 x = 1 + cos (2x )  2 sin² x = 1 – cos (2x)
 cos (2x) = 2.cos² x – 1  cos (2x) = 1 – 2.sin² x
𝑥 𝑥
 2 cos² 2 = 1 + cos x  2 sin² 2 = 1 – cos x




3

, Hoofdstuk 3



Kegelsneden

Cirkel:

+ (x-a)² + (y-b)² = r²

Middelpunt(a,b) en straal r

Bij een cirkel zijn de tekens voor de haakjes 2 keer
hetzelfde: 2 keer + of 2 keer -

Ellipsen:

𝑥−𝑎 2 𝑦−𝑏 2
( 𝑐
) +( 𝑑
) =1

Middelpunt (a,b) en toppen (a+c, b) ; (a-c, b) ; (a, b+d) ; (a, b-d)

Als c = d hebben we te maken met een cirkel met straal r = c = d.


X-parabolen:

X = ay² + by + c

De symmetrieas (en asymptoot) is een horizontale rechte door de
top en evenwijdig met de x-as.

 Nulpunten (op Y-as): berekenen met discriminant.
 Snijpunt X-as: (c, 0)
−𝑏 −𝑏
 TOP: (f( 2𝑎 ) ; 2𝑎
)



Hyperbool type I

(x-a)(y-b) = k met k > 0

Middelpunt (a,b) en toppen (a+√𝑘, b+√𝑘) en (a-√𝑘, b-√𝑘)
Asymptoten: x = a en y = b


Hyperbool type II

(x-a)² - (y-b)² = k met k > 0

Middelpunt (a,b) en toppen (a+√𝑘 , b) en (a-√𝑘 , b)
Asymptoten: y – b = x – a en y – b = a - x

Bij een hyperbool type I is het teken van 1 haakje verschillende: 1 keer + en 1
keer – of omgekeerd.




4

, Hoofdstuk 3




Hoofdstuk 3: Kegelsneden

1. Cirkels OF Ellipsen

De vergelijking van een cirkel wordt gegeven door: (x - xa)² + (y - ya)² = r²

Voor de vergelijking van een cirkel met middelpunt (a, b) en straal r wordt dit: (x - a)² + (y - b)² = r²

Indien we de algemene vergelijking uitwerken krijgen we: x² + y² + 2ax + 2by + c = 0

We kunnen cirkels herkennen doordat de coördinaten van x² en y² gelijk zijn.

Oefening 5.2 bepaal middelpunt en straal:

36x² + 36y² - 24x + 36y – 23 = 0

Stap 1) Merkwaardig product opstellen

 36x² - 24x + 36y² + 36y – 23 = 0

A² = 36x²  A = 6x
−24𝑥
2AB = -24x  2.6x.B = -24x  B = = -2
12𝑥

A² = 36y²  A = 6y
36𝑦
2AB = 36y  2.6y.B = 36y  B = 12𝑦 = 3

Stap 2) Merkwaardig product vervolledigen

36x² - 24x + (-2)² - (-2)² + 36y² + 36y + 3² - 3² - 23 = 0

(6x – 2)² + (6y + 3)² - 4 - 9 – 23 = 0
(6x – 2)² + (6y + 3)² = 36

Stap 3) Coëfficiënt wegdelen bij x en y + het rechterlid gelijkstellen aan 1
(6𝑥−2)² (6𝑦+3)²
+ =1
36 36

6𝑥−2 2 6𝑦+3
( ) +( )=1
6 6

1 2 1 2
(𝑥 − 3) + (𝑦 + 2) = 1


1 1
Middelpunt (3 , − 2) en r = √1 = 1



Bij ellipsen wordt dezelfde methode gebruikt maar is c niet gelijk aan d.
Hier is c = d (1 = 1).




5

Los beneficios de comprar resúmenes en Stuvia estan en línea:

Garantiza la calidad de los comentarios

Garantiza la calidad de los comentarios

Compradores de Stuvia evaluaron más de 700.000 resúmenes. Así estas seguro que compras los mejores documentos!

Compra fácil y rápido

Compra fácil y rápido

Puedes pagar rápidamente y en una vez con iDeal, tarjeta de crédito o con tu crédito de Stuvia. Sin tener que hacerte miembro.

Enfócate en lo más importante

Enfócate en lo más importante

Tus compañeros escriben los resúmenes. Por eso tienes la seguridad que tienes un resumen actual y confiable. Así llegas a la conclusión rapidamente!

Preguntas frecuentes

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

100% de satisfacción garantizada: ¿Cómo funciona?

Nuestra garantía de satisfacción le asegura que siempre encontrará un documento de estudio a tu medida. Tu rellenas un formulario y nuestro equipo de atención al cliente se encarga del resto.

Who am I buying this summary from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller maxxii123. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy this summary for $5.24. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

45,681 summaries were sold in the last 30 days

Founded in 2010, the go-to place to buy summaries for 15 years now

Empieza a vender

Vistos recientemente


$5.24  20x  vendido
  • (7)
Añadir al carrito
Añadido