fysica i hoofdstuk 3 kinematica en twee en drie dimensies
universiteit gent
ugent
Geschreven voor
Universiteit Gent (UGent)
Biochemie en biotechnologie
Fysica I
Alle documenten voor dit vak (11)
1
beoordeling
Door: neferlaverdoodt • 5 jaar geleden
Verkoper
Volgen
vastgoedstudent123
Ontvangen beoordelingen
Voorbeeld van de inhoud
Hoofdstuk 3: Kinematica in twee en drie Dimensies; Vectoren
Vector = Grootheid met zowel een grootte als een richting.
Scalair = Grootheid met enkel een grootte.
Optellen van vectoren a.d.h.v. grafische voorstelling door pijlen:
- Kopstaartmethode: Beginpunt van elke volgende pijl in eindpunt v/d vorige
pijl tekenen (grootte en hoek behouden) → De resultante is de pijl vanuit
het beginpunt v/d eerste pijl tot aan het eindpunt v/d laatste pijl.
- Parallellogrammethode: Beginpunten van 2 pijlen in zelfde punt → De
resultante is de diagonaal v/e parallellogram (met de 2 pijlen als zijden)
vertrekkende van hetzelfde beginpunt als de 2 pijlen.
- Analytische methode: Opdelen van elke pijl in componenten van gekozen
assen m.b.v. goniometrische functies
o 𝑉𝑥 = 𝑉𝑐𝑜𝑠𝜃.
o 𝑉𝑦 = 𝑉𝑠𝑖𝑛𝜃.
Na optellen van x- en y-componenten berekenen we de resultante
o Grootte: 𝑉 = √𝑉𝑥2 + 𝑉𝑦2 (Pythagoras).
𝑉𝑦
o Richting: 𝑡𝑎𝑛𝜃 = .
𝑉𝑥
- Een vector aftrekken van een andere vector is hetzelfde als optellen met
zijn tegengestelde vector (richting negatieve vector 180° omdraaien geeft
positieve vector).
- Vector 𝑉⃗ vermenigvuldigen met een scalair c → Resultante behoudt
oorspronkelijke richting en heeft grootte c· 𝑉
⃗.
Eenheidsvector = Vector met grootte gelijk aan 1 die langs een gekozen
coördinaat-as ligt. (Vector kan dus worden geschreven als 𝑉
⃗ = 𝑉𝑥 ⃗⃗⃗
𝑒𝑥 + 𝑉𝑦 ⃗⃗⃗⃗ 𝑒𝑧 .)
𝑒𝑦 + 𝑉𝑧 ⃗⃗⃗
Verplaatsingsvector = Δ𝑟 = ⃗⃗⃗ 𝑟1 .
𝑟2 − ⃗⃗⃗
Δ𝑟 𝑑𝑟
Momentane snelheidsvector = 𝑣 = lim = met als richting de raaklijn aan het
Δ𝑡→0 Δ𝑡 𝑑𝑡
pad van de beweging in de grafiek.
𝑑𝑟 𝑑𝑥 𝑑𝑦 𝑑𝑧
(Opdeling in eenheidsvectoren 𝑣 = = 𝑒
⃗⃗⃗ + 𝑑𝑡 ⃗⃗⃗⃗
𝑒𝑦 + 𝑑𝑡 ⃗⃗⃗
𝑒𝑧 = 𝑣𝑥 ⃗⃗⃗
𝑒𝑥 + 𝑣𝑦 ⃗⃗⃗⃗ 𝑒𝑧 .)
𝑒𝑦 + 𝑣𝑧 ⃗⃗⃗
𝑑𝑡 𝑑𝑡 𝑥
Veralgemeende vergelijkingen voor bewegingen met constante versnelling:
- 𝑣 = ⃗⃗⃗⃗
𝑣0 + 𝑎𝑡. Opdeling in x- en y-componenten mogelijk.
1
- 𝑟 = ⃗⃗⃗ 𝑣0 𝑡 + 2 𝑎𝑡 2 .
𝑟0 + ⃗⃗⃗⃗
1
Voordelen van het kopen van samenvattingen bij Stuvia op een rij:
√ Verzekerd van kwaliteit door reviews
Stuvia-klanten hebben meer dan 700.000 samenvattingen beoordeeld. Zo weet je zeker dat je de beste documenten koopt!
Snel en makkelijk kopen
Je betaalt supersnel en eenmalig met iDeal, Bancontact of creditcard voor de samenvatting. Zonder lidmaatschap.
Focus op de essentie
Samenvattingen worden geschreven voor en door anderen. Daarom zijn de samenvattingen altijd betrouwbaar en actueel. Zo kom je snel tot de kern!
Veelgestelde vragen
Wat krijg ik als ik dit document koop?
Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.
Tevredenheidsgarantie: hoe werkt dat?
Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.
Van wie koop ik deze samenvatting?
Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper vastgoedstudent123. Stuvia faciliteert de betaling aan de verkoper.
Zit ik meteen vast aan een abonnement?
Nee, je koopt alleen deze samenvatting voor $3.69. Je zit daarna nergens aan vast.