100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Samenvatting - Wiskunde 'A1a; 2. Veeltermfuncties' GO! Onderwijs

Rating
-
Sold
1
Pages
6
Uploaded on
26-11-2023
Written in
2023/2024

Dit document is een samenvatting van 'Analyse 1a; 2. Veeltermfuncties', uit het boek 'VBTL 5 - gevorderde wiskunde' voor het vak Wiskunde in het GO! Onderwijs in de doorstroomfinaliteit/ASO.

Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Secondary school
Study
3e graad
Course
School year
5

Document information

Uploaded on
November 26, 2023
Number of pages
6
Written in
2023/2024
Type
Summary

Subjects

Content preview

Veeltermfuncties

1. INLEIDING
1.1 Definities
Functie
Een functie is een verband tussen twee variabelen x en y waarbij voor elke x-waarde
hoogstens één y-waarde bestaat. Bij ene functievoorschrift is x de onafhankelijke
variabele en y de afhankelijke variabele. Er zijn verschillende representaties van een
functie: verwoording, tabel, letterformule (voorschrift) en grafiek. De formule die de
functie bepaalt, is het functievoorschrift. De y-waarden van een functie worden ook de
functiewaarden of beelden genoemd.
Domein en bereik van een functie
Het domein van een functie f is de verzameling van de x-waarden waarvoor de
functiewaarde bestaat.
De notatie hiervan is: dom f = … Het domein lezen we af op de x-as, van links naar
rechts.
Het bereik (beeld) van een functie f is de verzameling van de y-waarden waarvoor een
x-waarde bestaat zodat y = f(x). De notatie hiervan is: ber f = … Het bereik lezen we af
op de y-as, van onder naar boven.
1.2 Algebraïsche functies
Algebraïsche functie
Een algebraïsche functie is een reële functie waarbij in het functievoorschrift enkel de
bewerkingen optellen, aftrekken, vermenigvuldigen (ook machten), delen en n-
demachtsworteltrekking voorkomen.
Veeltermfunctie
Een veeltermfunctie van de n-de graad is een functie waarvan het functievoorschrift
een veelterm is van de n-de graad in x.
Rationale functie
g(x)
Een rationale functie f is een functie met voorschrift f(x) = waarbij g en h
h(x)
veeltermfuncties zijn en h(x) niet de nulveelterm is.
Irrationale functie
Een irrationale functie is een algebraïsche functie die verschillend is van een rationale
functie. Dit betekent dat in het functievoorschrift (na vereenvoudiging) de variabele x
voorkomt onder één of meerdere worteltekens of in de noemer van één of meerdere
breuken.
1.3 Niet-algebraïsche of transcendente functies
Transcendente functies
Niet-algebraïsche functies of transcendente functies zijn functies zoals exponentiële
functies (met x als exponent), logaritmische functies, goniometrische functies (sin x,
cos x …), G-functies en signfuncties.




1

, 2. VEELTERMFUNCTIES
2.1 Voorbeelden
Soorten veeltermfuncties
Er zijn verschillende soorten veeltermfuncties:

functievoorschrift functie
f(x) = a constante functie
f(x) = ax + b eerstegraadsfunctie
f(x) = ax² + bx + c tweedegraadsfunctie
f(x) = ax³ + bx² + cx + d derdegraadsfunctie
2.2 Herhaling van de belangrijkste kenmerken van constante, eerste- en
tweedegraadsfuncties
Constante functies
De grafiek is een rechte die evenwijdig is met de x-as en gaat door het punt met
coördinaat (0,a).
Eerstegraadsfuncties
De grafiek is een dalende of een stijgende rechte, die al dan niet door de oorsprong
−b
gaat. De nulwaarde van een eerstegraadsfunctie kunnen we berekenen door: x=
a
a wordt de richtingscoëfficiënt genoemd. Als die negatief is, is de grafiek een dalende
rechte. Als die positief is, is de grafiek een stijgende rechte. Als b = 0, dan gaat de
grafiek door de oorsprong.
Tweedegraadsfuncties
De grafiek is een parabool met vergelijking y = ax² + bx + c waarvan de as evenwijdig
is met de y-as.
−b −b2 + 4 ac
De top van de grafiek (maximum of minimum) noteren we als volgt: T ( , ).
2a 4a
Als de parameter a positief is, hebben we een dalparabool en een minimum. Als a
negatief is, dan spreken we van een bergparabool en een maximum. De nulwaarden
kunnen we berekenen door de discriminant te berekenen. De formule daarvoor is b² -
4ac.
D < 0 ax² + bx + c = 0 heeft geen oplossingen V=∅
b
D = 0 ax² + bx + c = 0 heeft één oplossing V = {− }
2a
D > 0 ax² + bx + c = 0 heeft twee oplossingen V = {x1, x2}
−b−√ D −b+ √ D
met x1 = en x2 =
2a 2a
2.3 Hogeregraadsfuncties
f(x) = (x – 3)(2x + 4)²(-x² + x + 6)(-7 – x)
We beginnen met het bekijken van de nulwaarde(n) van elke term. De nulwaarden bij
dit functievoorschrift zijn: 3(1x), -2(2x), -7(1x) en voor -x² + x + 6 gebruiken we de
discriminant, met als oplossingen -2 en 3. Alles te samen geeft dat: -7(1x), -2(3x) en
3(2x). De nulwaarden die een even aantal keren voorkomen, moeten we goed
onthouden aangezien de grafiek links en rechts van die nulwaarde niet van teken zal
veranderen (+ blijft +, - blijft -). Om de tekentabel te kunnen opstellen, hebben we de
nulwaarden nodig (die hebben we nu al) en het verloop van de grafiek. Daarvoor
2
$6.58
Get access to the full document:

100% satisfaction guarantee
Immediately available after payment
Both online and in PDF
No strings attached


Also available in package deal

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
thibauttaminiau Katholieke Universiteit Leuven
Follow You need to be logged in order to follow users or courses
Sold
73
Member since
2 year
Number of followers
22
Documents
339
Last sold
4 days ago

3.8

12 reviews

5
5
4
3
3
2
2
0
1
2

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions