100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten
logo-home
Samenvatting - Wiskunde '1. Complexe getallen' GO! Onderwijs $5.39
In winkelwagen

Samenvatting

Samenvatting - Wiskunde '1. Complexe getallen' GO! Onderwijs

 0 keer verkocht
  • Vak
  • Instelling

Dit document is een samenvatting van 'Complexe getallen; 1. Complexe getallen', uit het boek 'VBTL 5 - gevorderde wiskunde' voor het vak Wiskunde in het GO! Onderwijs in de doorstroomfinaliteit/ASO.

Voorbeeld 2 van de 8  pagina's

  • 26 november 2023
  • 8
  • 2023/2024
  • Samenvatting
  • Middelbare school
  • 1e graad
  • 5
avatar-seller
Complexe getallen

1. COMPLEXE GETALLEN
1.1 Imaginaire eenheid i
i² is een vierkantswortel uit -1  i² = -1
1.2 Definitie
Een complex getal is een getal van de vorm z = a + bi (a, b ∈ R ). Alle complexe getallen
samen vormen de verzameling C . a noemen we het reële deel van het complex getal. b
noemen we het imaginaire deel. Als b = 0, is het complex getal een zuiver reëel getal.
Het is duidelijk dat R ⊂ C .
Als a = 0 en b ≠ 0, noemen we het complex getal zuiver imaginair.

2. REKENEN MET COMPLEXE GETALLEN
2.1 Som en verschil van twee complexe getallen
Algemene formules voor som en verschil van twee complexe getallen
z1 + z2 = (a + bi) + (c + di) = (a + c) + (b + d)i
z1 - z2 = (a + bi) - (c + di) = (a - c) + (b - d)i
Tegengestelde complexe getallen
Tegengestelde complexe getallen zijn twee complexe getallen waarvan de som 0 is. Het
tegengestelde getal van een complex getal z wordt met -z genoteerd.
Eigenschappen C , +
∀ z1, z2, z3 ∈C :
1. z1 + z2 ∈C
2. z1 + z2 = z2 + z1
3. (z1 + z2) + z3 = z1 + (z2 + z3)
4. z1 + 0 = 0 + z1 = z1
5. z1 + (- z1) = (- z1) + z1 = 0
2.2 Product van twee complexe getallen
Algemene formule voor product van twee complexe getallen
z1 · z2 = (a + bi) · (c + di)
= ac + bci + adi + bdi²
= ac - bd + bci + adi
Eigenschappen C , ·
∀ z1, z2, z3 ∈C :
1. z1 · z2 ∈C
2. z1 · z2 = z2 · z1
3. (z1 · z2) · z3 = z1 · (z2 · z3)
4. z1 · 1 = 1 · z1 = z1
5. 0 · z1 = z1 · 0 = 0
6. z1 · (z2 + z3) = z1 · z2 + z1 · z3




2.3 Toegevoegde complexe getallen of geconjugeerde van een complex getal
Toegevoegde complexe getallen
1

, Toegevoegde complexe getallen zijn getallen die hetzelfde reële deel maar
tegengestelde imaginaire deel hebben. 5 + 2i is de geconjugeerde van 5 - 2i. z wordt z
met a + bi dat a - bi wordt.
Eigenschappen
∀ z, z1, z2 ∈C :
1. ź = z
2. z + z ∈ R 3. z · z ∈ R
4. z 1+ z2 =z1 + z 2
5. z 1 · z 2=z 1 · z 2
Bewijzen eigenschappen




2.4 Quotiënt van twee complexe getallen
Algemene term



2.5 Omgekeerde van een complex getal
Eigenschap
z · z-1 = z-1 · z = 1

2.6 Machtsverheffing in ℂ
Machten in ℂ
∀ a + bi ∈C : (a + bi)0 = 1
(a + bi)1 = a + bi
n 2: (a + bi)n = (a + bi) · (a + bi) · (a + bi) · … · (a + bi) -> n factoren
Speciale machten in ℂ met i
i1 = i, i² = -1, i³ = -i, i4 = 1




2.7 Vierkantswortels uit een negatief reëel getal
Een reëel getal a kleiner dan 0:


2

Dit zijn jouw voordelen als je samenvattingen koopt bij Stuvia:

Bewezen kwaliteit door reviews

Bewezen kwaliteit door reviews

Studenten hebben al meer dan 850.000 samenvattingen beoordeeld. Zo weet jij zeker dat je de beste keuze maakt!

In een paar klikken geregeld

In een paar klikken geregeld

Geen gedoe — betaal gewoon eenmalig met iDeal, creditcard of je Stuvia-tegoed en je bent klaar. Geen abonnement nodig.

Direct to-the-point

Direct to-the-point

Studenten maken samenvattingen voor studenten. Dat betekent: actuele inhoud waar jij écht wat aan hebt. Geen overbodige details!

Veelgestelde vragen

Wat krijg ik als ik dit document koop?

Je krijgt een PDF, die direct beschikbaar is na je aankoop. Het gekochte document is altijd, overal en oneindig toegankelijk via je profiel.

Tevredenheidsgarantie: hoe werkt dat?

Onze tevredenheidsgarantie zorgt ervoor dat je altijd een studiedocument vindt dat goed bij je past. Je vult een formulier in en onze klantenservice regelt de rest.

Van wie koop ik deze samenvatting?

Stuvia is een marktplaats, je koop dit document dus niet van ons, maar van verkoper thibauttaminiau. Stuvia faciliteert de betaling aan de verkoper.

Zit ik meteen vast aan een abonnement?

Nee, je koopt alleen deze samenvatting voor $5.39. Je zit daarna nergens aan vast.

Is Stuvia te vertrouwen?

4,6 sterren op Google & Trustpilot (+1000 reviews)

Afgelopen 30 dagen zijn er 69052 samenvattingen verkocht

Opgericht in 2010, al 15 jaar dé plek om samenvattingen te kopen

Begin nu gratis

Laatst bekeken door jou


$5.39
  • (0)
In winkelwagen
Toegevoegd