100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Übungsaufgaben zur Vorlesung Analsis1 $7.05   Add to cart

Other

Übungsaufgaben zur Vorlesung Analsis1

 1 view  0 purchase
  • Course
  • Institution

Übungsaufgaben zur Vorlesung Analsis1

Preview 2 out of 5  pages

  • December 17, 2023
  • 5
  • 2023/2024
  • Other
  • Unknown
avatar-seller
Aufgabe 1


(i) sei MEO undX P(M).
=


Für A,BEX
gelte AmB, genau dann,
wenn AnB 0.
=




Reflexivitat:FAc gilt AvA, da AnA A=

=
O

AnB= 0
(kommutativität)
symmetrie: FA,B CX
giltA-B B-A =
, da BrA =




Transitivität:FA,B, CCX:ArBrBrC = Arc, da (AnBInlBnC
An(BuB)nC
=




=

ArBrC
=On
-

(Assoziativität (
=>
A-C
~
Aquivalenzklassen:Kl.):alle einelementigen Teilmengen
K(2) alle
=




zweielementigen Teilmengen
:


(n)
* alle
=



n-elementigen Teilmengen




·

Reflexivitat:x -x 0 2
= =
xx
=
r
·

symmetrie: 2.3. x
wy y2x
=




x -

ycz 3y
=
-
x -
= (x -

x) 2
+

3xx
= v
·

Transitivität: 2.2.x
-

y1y z 3x
=
-
2


x -




yezny
-

ze 2 ((x
=

-

y) (y z)
+
-


x
=
-
ze xzv
=




Aquivalenzklassen:K( -n) {x
=
-



y -
=



n3,
:

k( 1 -

{x y
=
- -
=

13,
k(0) {x-y 03,
= =




k(1) 4x
= -




y 13,
=




:


k(n) =

{x-y m3 =




,




+


Xx,yeR:x -

y-2,n 2
=

, (ii) MCI, für A.BCM sei ArB,
genau dann, wenn


und B
A
gleichviele Elemente besitzen




gilt:(A1
Reflexivitat:VAcM = (A) AnA
=

w

gilt:(Al=1B)
Symmetrie:FA,BCM 1B1 (A) AUBE BA
c => =
=




Transitivität.FA, B, CCM (A) (B( n1B1 (C) (A) 1B1 C (A) (C) Arc v
gilt:
)
=

=
= =
= =
= =




Aquivalenzklassen:

Jede Äquivalenzklasse enthält
die
Teilmengen von M, die die
gleiche Anzahl an Elementen

haben. Es sind endlich viele, da M endlich ist.



k() alle
einelementigen Teilmengen von M
=




K(2) alle M
zweielementigen Teilmengen von
=




"

kin) = ...




für neN


·Y: {f: =


N +
M3 " für endlich viele k, also o

Reflexivität:Vf: N-M
gilt f(k) f(k)
=



FreN=> fik)-f(k) w

symmetric:fug cf(h) g(k) = = nur für endl. viele keN



f(k)=g(k)< g(k) =f(h) =




grfv
=




Transitivität:frg -grh =(f(x) g(4)
= nur für endlich viele k

q(h) h(h) = nur für endlich viele k




=(f(h) g(h)
= nur für endl. viele h


fun,
=>




(bitte das Thema nochmal besprechen!!!)

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller herminerieg. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.05. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

62890 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 14 years now

Start selling
$7.05
  • (0)
  Add to cart