These documents provide various math exercises on diverse subjects covered in calculus such as complex numbers, matrix, primitives, and so on. They come from a class in the top French high school Louis-Le-Grand founded by Louis XIV.
N° 8 page 17 u 0 = 1, u n+1 = (1 + i) × u n .
1. u 0 = 1 , u1 = 1 + i , u 2 = (1 + i)2 = 2i , u 3 = 2i(1 + i) = −2 + 2i .
2. (u n ) est la suite géométrique de raison q = 1 + i et de premier terme u 0 = 1.
3. u n = q n u 0 , donc u n = (1 + i)n .
¢4
4. u 8 = (1 + i)8 = (1 + i)2 = (2i)4 = 24 i4 = 16 car i4 = (i2 )2 = (−1)2 = 1 .
¡
Complément : Après avoir remarqué que u 4 = −4 = −4u 0 , on voit que u 5 = −4u 1 , u 6 = −4u 2 ,
u 7 = −4u 3 , etc, c’est-à-dire que les suites (u 4p ) , (u 4p+1 ) , (u 4p+2 ) , (u 4p+3 ) sont des suites géométriques
de raison −4 , ce qui permet de connaître la forme algébrique de u n de la façon suivante :
n 4p 4p + 1 4p + 2 4p + 3
p p p
un (−4) (−4) (1 + i) (−4) (2i) (−4)p (−2 + 2i)
ou si l’on préfère :
n 4p 4p + 1 4p + 2 4p + 3
p 2p p 2p p 2p+1 p 2p+1
un (−1) 2 (−1) 2 (1 + i) (−1) 2 i (−1) 2 (−1 + i)
N° 18 page 19
1. Z = z 2 − iz + 3i − 4 Z = z 2 − iz + 3i − 4 = z 2 − iz + (−4 + 3i) = z 2 − i × z + (−4 − 3i) = z 2 + i z − 3i − 4 .
2. Z = 3i + (2 + i)z Z = 3i + (2 + i) z = −3i + (2 − i)z .
µ ¶
3z + i 3z + i 3z + i 3z − i
3. Z = Z= = = .
z −i z −i z −i z +i
N° 20 page 19
On pose Z = x + yi et z = s + t i . On suppose ici que Z = z n .
On a donc x 2 + y 2 = Z Z et s 2 + t 2 = z z .
¡ ¢n ¢n
Or Z Z = z n z n = z n z n = z z , donc x 2 + y 2 = s 2 + t 2 .
¡
N° 21 page 19
Soit P (z) = az 2 + bz + c où a, b, c sont des réels.
Si z 0 est une racine de P (z) , on a P (z 0 ) = 0 , ce qui entraîne que P (z 0 ) = 0 = 0 .
Or P (z 0 ) = a z 0 2 + b z 0 + c , et comme a, b, c sont des réels, a = a , b = b , c = c , donc P (z 0 ) = a z 0 2 + b z 0 + c .
D’où a z 0 2 + b z 0 + c = 0 , ce qui exprime que z 0 est une racine de P (z).
Remarques :
1) Si les coefficients, ou certains coefficients, ne sont pas réels, le résultat n’est plus vrai. Par exemple, on
constate que z 0 = i est une racine du polynôme z 2 + (1 − i)z − i , mais que son conjugué z 0 = −i n’en est
pas une.
2) Le résultat se généralise facilement à un polynôme de degré n à coefficients réels :
si P (z) = a n z n + a n−1 z n−1 + · · · + a 1 z + a 0 et si a 0 , a 1 , . . . , a n sont tous réels, alors on établit comme ci-dessus
¡ ¢
que, pour tout z, P (z) = P z .
Donc z 0 est une racine de P (z) si et seulement si z 0 en est une également.
1
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller kenzou. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $11.08. You're not tied to anything after your purchase.