100% tevredenheidsgarantie Direct beschikbaar na je betaling Lees online óf als PDF Geen vaste maandelijkse kosten 4.2 TrustPilot
logo-home
Samenvatting

Samenvatting Statistiek 1 (5000FSWST1) deel 2 kansen

Beoordeling
-
Verkocht
1
Pagina's
39
Geüpload op
28-12-2023
Geschreven in
2023/2024

samenvatting op basis van de lessen, powerpoints, werkcolleges en het boek statistisch gezien vanaf hoofdstuk 8.

Instelling
Vak











Oeps! We kunnen je document nu niet laden. Probeer het nog eens of neem contact op met support.

Gekoppeld boek

Geschreven voor

Instelling
Studie
Vak

Documentinformatie

Heel boek samengevat?
Nee
Wat is er van het boek samengevat?
Hoofdstuk 8 tot 14
Geüpload op
28 december 2023
Aantal pagina's
39
Geschreven in
2023/2024
Type
Samenvatting

Onderwerpen

Voorbeeld van de inhoud

Statistiek 1 – Deel 2
Hoofdstuk 8: basisbegrippen kansrekening & axiomatische kansrekening
Nut van kansrekening:
- Beheersing van onzekerheid
o Risico’s kwantificeren d.m.v. kansen
Focus op stochastisch proces
Stochastisch proces:
- Uitkomst is onzeker, hangt af van het toeval
o Bv. opgooien van een eerlijke dobbelsteen en aantal ogen noteren
o Bv. politieke voorkeur vragen aan voorbijganger
Deterministisch proces:
- Uitkomst is zeker, hangt niet af van het toeval.
o Bv: vaas gevuld met rode knikkers, geblinddoekt knikker kiezen en kleuren noteren
o Bv: politieke voorkeur vragen aan N-VA lid.
Bv: opgooien van een eerlijke dobbelsteen en aantal ogen noteren: stochastisch proces
- Uitkomstenruimte S = de verzameling van alle mogelijke uitkomsten
o Bv: S = {1, 2, 3, 4, 5, 6} (‘scample space’)
Toevalsgebeuren
Toevalsgebeuren/gebeurtenis = een (deel) verzameling van mogelijke uitkomsten
Bv: B = {2, 4, 6 } = {even aantal ogen gooien};
A = {1} ;
S = {1, 2, 3, 4, 5, 6} = {minder dan 7 gooien};
∅ = lege verzameling ‘fi’
= (negatief aantal ogen gooien)
Terminologie: een toevalsgebeuren A “doet zich voor” als de uitkomst van een stochastisch proces
een element is van A.

Elementair toevalsgebeuren = gebeurtenis die slecht 1 element bevat
- Bv: A = {1} is een elementaire gebeurtenis

Samengesteld toevalsgebeuren = gebeurtenis die meerdere elementen bevat
Bv: B = {2, 4, 6} = (even aantal ogen gooien)

Machtsverzameling
Machtsverzameling M(S) = bevat alle mogelijke gebeurtenissen uit S
- Bv: opgooien 1 eerlijke dobbelsteen:
- M(S) = { ∅, {1}, {2}, {3}, {4}, {5}, {6}, {1,2}, {1,3}, ..., {1,2,3}, {1,2,4}, … , {1,2,3,4,5,6}}

#M(S) = aantal elementen van M(S)
- Als S bestaat uit n uitkomsten, dan bestaat de machtsverzameling uit 2n elementen
Notatie: als #S = n → #M(S) = 2n
▪ Bv: opgooien 1 eerlijke dobbelsteen: #S = 6 → #M(S) = 26 = 64




1

,Unie
Bv: geïnteresseerd in even aantal ogen of aantal ogen kleiner dan 3 → A = {2, 4, 6} en B = {1, 2}

A of B doet zich voor als de uitkomst ofwel tot A ofwel tot B behoort.
Notatie: A ∪ B (‘A unie B’)
→ A ∪ B = {1, 2, 4, 6}

Doorsnede
Bv: geïnteresseerd in even aantal ogen en hoogstens 4 ogen → A = {2, 4, 6} en B = {1, 2, 3, 4}

A en B doen zich samen voor als de uitkomst zowel tot A als tot B behoort
Notatie: A ∩ B (‘A doorsnede B’)
→ A ∩ B = {2, 4}

Bv: C = {1} en A = {2, 4, 6}
→ C ∩ A = ∅ (lege verzameling)
(C en A zijn ‘disjunt = geen gelijkenissen’)

Complement
Bv: niet geïnteresseerd in even aantal ogen → A = {2, 4, 6} mag zich niet voordoen

Het complement van A bestaat uit alle uitkomsten die niet in A zitten
Notatie: Ac = S ∖ A
(‘A complement’ = ’S min A’)
→ Ac = {1,3, 5}

Bv: B = {2, 3, 5, 6}
→ Bc = {1, 4} (want S = {1, 2, 3, 4, 5, 6})

Disjunct
A en B zijn disjunct/mutueel exclusief als hun doorsnede leeg is (niets gemeenschappelijks)

Bv: A = {1} en B = {2, 4, 6} zijn disjunct
Want A ∩ B = ∅ ( ø = ‘fi’ = lege verzameling)
Exhaustief
G1, G2, G3 zijn exhaustief als hun unie gelijk is aan de uitkomstruimte S
Bv: G1 = {1}, G2 = {2, 4, 6} en G3 = {2, 3, 5} zijn exhaustief, want G1 ∪ G2 ∪ G3 = {1, 2, 3, 4, 5, 6} = S




2

,Disjunct EN exhaustief

G1, G2, G3 zijn disjunct en exhaustief als ze elkaar niet overlappen en hun unie gelijk is aan de
uitkomstruimte S
Bv: G1 = {2}, G2 = {1, 3, 4} en G3 = {5, 6}
→ G1, G2 en G3 vormen samen een partitie van S
Partitie / volledig stelsel
De gebeurtenissen G1, G2, …, Gk vormen een partitie / een volledig stelsel als ze
1. Exhaustief zijn
2. Twee aan twee desjunct zijn
Bv:G1 = {1}, G2 = {2, 4, 6} en G3 = {3, 5} vormen een partitie
Speciaal geval:
Bv: {1}, {2}, {3}, {4}, {5} en {6} vormen een partitie de elementaire gebeurtenissen horende bij
een kansexperiment vormen steeds een partitie (want ze zijn mutueel exclusief en
exhaustief)
Kans

Kans = probability, probabilité → ‘P’
→ de kans P(G) drukt uit hoe waarschijnlijk of onwaarschijnlijk de gebeurtenis G is
Bv: P ({2 gooien met eerlijke dobbelsteen}) = 1/6
- P (G) = een reëel getal tussen 0 en 1
- Met elke gebeurtenis G kan een kans P(G) geassociaard worden
P
G P (G)
- P is een ‘machine’ die met elke input G een output P(G) associeert
P = functie die met elke G een reël getal P(G) tussen 0 en 1 associeert

G → functie P → P(G)
(element uit M(S)) (getal tussen 0 en 1)
{2} → funtie P → P({2}) = 1/6

Kansdefenitie

1) Subjectieve kansdefinitie (Gokkans)
- Bv: ‘kans om lotto te winnen is erg klein’
- Vaak gebaseerd op ervaring, vaag

2) Empirische kansdefinitie (Zweetkans)
- Bv: kans om 2 te gooien bij eelijke (?) dobbelsteen
- Dobbelsteen heel vaak opwerken (n→ oneindig)
𝑓
- Geregeld 𝑛𝑖 berekenen (= benadering voor kans)
𝑓
- Kijken waar de waarden 𝑛𝑖 naartoe gaan als n toeneemt → de ‘limietwaarde’ is de gezochte
kans.
𝑓
- Formule: 𝑃(𝐴) = lim 𝑛𝑖
𝑛→∞




3

, 3) Theoretische kansdefinitie van Laplace (weetkans)
- Bv: kans om 2 te gooien bij eerlijke (!) dobbelsteen
- # gunstige uitkomsten = 1
- # mogelijke uitkomsten = 6
- P({2}) = 1/6

#𝐴 # 𝑔𝑢𝑛𝑠𝑡𝑖𝑔𝑒
𝑃(𝐴) = =
# 𝑆 # 𝑚𝑜𝑔𝑒𝑙𝑖𝑗𝑘𝑒

Opmerking : Laplace veronderstelt dat elke uitkomst even plausibel is
→ enkel toepassen bij eerlijke dobbelsteen

4) Axiomatische kansdefinitie:
De reële functie P moet voldoen aan 3 axioma’s
o 0 ≤ P(A) ≤ 1
o P(S) = 1
o Als A en B desjunct gebeurtenissen zijn (A ∩ B = ø), geldt dat P(A ∪ B) = P(A) + P(B)
bv: A = {2}; B = {1, 4} → A en B disjunct
P(A) = 1/6 ; P(B) = 2/6;
P (A ∪ B) = P({1, 2, 4}) = 3/6 = 1/6 + 2/6
→ Abstracte definitie; kansregels gebruiken

1e kansregel:
Complementregel: P(Ac) = 1 – P(A)
2e kansregel
Somregel: P(A ∪ B) = P(A) + P(B) – P(A ∩ B)

3e kansregel
Productregel:
P(A ∩ B) = P(𝐴|𝐵) . P(B)

P(A ∩ B) = P(𝐵|𝐴) . P(A)
→ voorwaardelijke kans nodig
→ ‘A priori’ vs ‘A posteriori’
P(𝐴|𝐵) = ‘A posteriori’ kans  P(𝐴|𝐵) . P(B) → P(B) = ‘A priori’ kans
→ P(𝐴|𝐵) = ‘de kans op A gegeven B’
𝑃 (𝐴 ∩𝐵)
→ P(𝐴|𝐵) = 𝑝(𝐵)
𝑃(𝐵∩𝐴) 𝑃(𝐴∩𝐵)
Of P(𝐵|𝐴) = =
𝑃(𝐴) 𝑃(𝐴)


(On)afhankelijkheid van gebeurtenissen
Bv: Man zijn en bril dragen:
- Heeft een man een hogere/lagere kans op het dragen van een bril (dan een vrouw)?
- Neen, want P(𝑏𝑟𝑖𝑙|𝑚𝑎𝑛), zal niet systematisch hoger/lager zijn dan P(bril)
- ‘man zijn’ en ‘bril dragen’ zijn onafhankelijke gebeurtenissen



4

Maak kennis met de verkoper

Seller avatar
De reputatie van een verkoper is gebaseerd op het aantal documenten dat iemand tegen betaling verkocht heeft en de beoordelingen die voor die items ontvangen zijn. Er zijn drie niveau’s te onderscheiden: brons, zilver en goud. Hoe beter de reputatie, hoe meer de kwaliteit van zijn of haar werk te vertrouwen is.
seppelienvos Universiteit Antwerpen
Volgen Je moet ingelogd zijn om studenten of vakken te kunnen volgen
Verkocht
17
Lid sinds
2 jaar
Aantal volgers
11
Documenten
6
Laatst verkocht
2 maanden geleden

0.0

0 beoordelingen

5
0
4
0
3
0
2
0
1
0

Recent door jou bekeken

Waarom studenten kiezen voor Stuvia

Gemaakt door medestudenten, geverifieerd door reviews

Kwaliteit die je kunt vertrouwen: geschreven door studenten die slaagden en beoordeeld door anderen die dit document gebruikten.

Niet tevreden? Kies een ander document

Geen zorgen! Je kunt voor hetzelfde geld direct een ander document kiezen dat beter past bij wat je zoekt.

Betaal zoals je wilt, start meteen met leren

Geen abonnement, geen verplichtingen. Betaal zoals je gewend bent via Bancontact, iDeal of creditcard en download je PDF-document meteen.

Student with book image

“Gekocht, gedownload en geslaagd. Zo eenvoudig kan het zijn.”

Alisha Student

Veelgestelde vragen