100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached
logo-home
Zusammenfassung Theoretische Physik 2 (Elektrodynamik) - Formelzettel/CheatSheet $7.07
Add to cart

Summary

Zusammenfassung Theoretische Physik 2 (Elektrodynamik) - Formelzettel/CheatSheet

 43 views  0 purchase
  • Course
  • Institution

All umfassende Formelsammlung (Cheat Sheet) auf zwei kompakten Seiten perfekt für die Prüfung in Theoretische Physik 2 (Elektrodynamik) im 3. Bachelorsemester Physik an der TUM. Die behandelten Themengebiete sind: Elektrostatik, Magnetostatik, Dipolstrahlung, Elektromagnetische Wellen, Hohlraumwe...

[Show more]

Preview 1 out of 3  pages

  • January 3, 2024
  • 3
  • 2020/2021
  • Summary
avatar-seller
INTEGRALSÄTZE ELEKTROSTATIK E 8 , 85 10-12




·
#
= .




MULTIPOLENTWICKLUNG
SordF ÄCr) SudV F')
au = Sar'pr)- -
Gauß : . =
div ACr) (F -




E(r) = (F)
Er)
·



S FERNZONE Taylorentwickel, In
1F = IF -
F'13
Fläche
y D




DEMO
=> Fluss von F(r) durch Lokalisierte R
,


- ladungsverteilungen
Sor SSEdFrotAlt
=
SrdV rotÄ
Limp
=
0-Raum)
Stokes :
Sul(RE) ( Ico I(r) =

it +F Ei Qij
Mittelwert RIF =
=

mit ) =




POISON-GLEICHUNG
Jd3r'PCF) 29i
-




Monopolmomentq
-
-
=



A() divE(r) <
unabhängig vo n

-
-
=
=



Dipolmoment Sarüs (F) qiFi Ursprungs





der Wahl des
= =
-
L



Quadrupolmoment EJdr's(r) Xixj'
0⑳
mit

6
gij Symetrisch"
=



"spurfrei,
Qij Qji
[iqi (3xirxie-riore) die Ei Qii = =


differenz =



~ mit

(3xiXi'-Gir)p(r)
Fri Flächendungsdichte O(F) Quadrupolmoment Qij Jdr
=




tangentiale Ex (Ez-En 13
j stetig
Ladungsverteilung
Ver
=



für E Konst W= Komponente Ist

=
=
=
1 ·

t
X spring
komponente (E-En ( =E
>
-




F
p( r)
mit verschiedene norma
(EC) / muss in UM
spiegelsymetrisch p(r)
·


* :
W(F)
.

=
. . -




%
Energiedichte W
...
=
werden
Raumbereiche geteilt 5



Win-ar
-E Dipolmoment # ↑ =
Qi =
0 Vi + j




di
ein 0
Eon Elf
=> =





coulomb-F = Q9i
Ö
·
=

=
Q .
E & = A(r) D( r) p
Kraft
=



Kugelsymetrisch
:
-
-




Dipolfeld Go




DEMO
z B
a G


.





=ein
Quadruparoment =
o
=
L diß =a Tors (3(p) p) -




RANDWERTPROBLEME Lösungsverfahren für
Poisson-Gleichung AI) =
-
--
+ Qij Ot Ent
WECHSEL-

mit
Wirruwas-W(r) =

gext +
(p . ) Eext -


Randbedingungen
für re
räumlich e (5) Raumbereich V ENERGIE
daß in
geg
:

begrenzt (Dirichlet) = W(r) qEext (p)Eext 5 Que
-

Grenzflächen auf OV
Kraft F
· + +
: = =
an
-




·
obion = Flov (Neumann)
allgemein M
Emitwirkende
:
=

Ex Ext


gepfe
M (dr'rx Ext( + F) =

~
=




neeitend" . Konst
s
DIPOL-DIPOL-
WECHSELWIRKUNG Wiz =do(-3-
IF F215 -




geerdet" h 0 und d h
=
Z . .
B , d .
.
,
.




formale auch Mit
-
Lösung ? => Potential einer fiktiven ladungs- KUGELFLÄCHEN FUNKTIONEN

Enterten Gr
=
GREEN'SCHER
verteilung
fr
RandbedingerhalbvonVsodasin Eigenfunktionen von AaYem( 4) ele + 1) Yem 10 4)
+
=
Ful
=
-




I , ,




DEMO
Potential vo n -

Yem(4) = PerCoss) eine
=




Mit Drf(FF) =
0 VF , Fe Punktladung
-
2 = 0, 1 , 2 ....




/oraFG(F . ) rev) G( , ) BILDLADUNGEN (angeerde e 0 e

~
und m =
Fredr 0
-

= = ... ...
=
0

De
,




-
und Ye - m ( 4) ,
=
1- 1)
M
Ye(0 4) ,
9
=

9B
gespiegelt d -
für
-
-



I Sedr's Grund (r-Gr
r] 0 Gla
geordnet POLYNOMEN


.
=> = -
o erzeug t & = Min (r ,
r')
·
=
,


· LEGENDRE-POLYNOME



S
:




Pe(z) ( 1)M( z2)mi Pen ne
Pe(z) z (E-1)) =
Son Elov Ellov Pelz)
= -

-




Flächenladungsdichte
=


=> = .

do ·




f)mePeM(z)
-




>
-
-




Flächenladung
=
Sor df o Per(z) =
>
-

bilden
in [1 , 17
vollständiges Orthogonalsystem
aus !
= Kraft XB 1
Il ADDITIONSTHEOREM
= -

vo n

=>
Kraft F -JordFG Eq(or) -Sond : Pe
Goder, e Orthogonalität
mer(e) Yem(0 4) = Pelosa
= =




(Fgo Fog) = -




·
Vollständigkeit : (22 + 1) Pe(z) Pe(z) =
G(z -



z) .



Relation Jde Yem (0 4) Ye'm 10 4)
SinTesinRicos(Y-Y')




I 6 Sie
See Omm' Mit
:

COSY costcost +
· =
=
, ,


MAGNETOSTATIR Mo = 1 , 26 . 10-0 N/A2
sphärische
KONINUITÄTSGLEICHUNG Bübt auf die Po(t) = 1
gem
=
Jar'sCr) re Yem(014) Mit ge =
1-17* *
dV Fdl
g Multipolmomente m
q
=

em



F
Stromstärke P1 (x)
scrit)(t) Il L divj
= x
=-
Stromdichte Trit) =


+ = -Lorenztheraft P2(r) =(3x 1) Yo H
ga
= -




dx =
vdt




=Fadungshaltung
C 0 MONOPOL
t(523
=

Pg(z) = -


3x)
= Esedf ) 0
; C DIPOL
=
= 1

-(352




DEMO
P((z) 30 ,3 + 3)
-1
= -




2 2 QUADRUPOL

Moj
=



F
parallel B rotB(r) = -


X # (r) =

In ~


&
itaußerhaltens =
. ..
ab !
Stromschleife 2 aus ist
Stationäre) Maxwellgleichung Yem 10 4)
mit
stoßen sich
V = XF ,




Sar ↓ (ri0 4) = (Aemr Beme) SUNG VON
Vek
pott )=
-




Yem( 4)
st B= Irr
+


..
, ,
3


Magnet- B(r) =
rot bei Zylindrischer
für geschlossene F
[Iriz) = Ker F) Pelos) e
oeffizient
A
+ =

wobei axialersymetrie
AMPEREBr) SedE Stetig
Im 0 bedingungen
MoSedET(r) "Magnet
=


MolE
=

Randflächen M= 0 , da Erice) Erin
·

= = an =




e
Idakeine
>
-
Wenn r =
0 in VwoX =
0) = be =
0 Punkladung in



Unabhängig n ,
#(0) 0




BezugslopRE
>wenn V bisr => e
=



= d()
=


Magnetische
const
er Entfernung
-



aus
+ =
a =>




Emmen
Abstand) der Wahl des SEPERATIONSANSATZ
Crit entwickelten
F
>
- IDENTITÄTEN für
Laplace-Gleichung AP(F) = -




P(r)
F - a
-




Er) geschrieben
ebenstromscheingos Crotdi
I(r)


f(x)g(y)h(z) PDEZerfä

prant
Gyromagnetisches
=
-
-
als Kombination :

_
~
E verhältnis
!
Se -


impuls




Feldlinien : F
Jede Strömen stellt 00
Anordnung Dipol dar

S homogen geladene Kugel
einen
von aus
großer Entfernung
...




·




W
#dip(r) FrMx Baip(r) = [F(F) m] =>
Drehmoment JxIxB(r)) dr EXO
Greensh =S




DEMO
= - =
=




Tar
mit Relativposition z B. (r-) .


Der
.




1
-




Magnetfelds rot [ (F)
Kraft F äußeren =

FWrag
-
eines
. a20
=



(T(r) &(r) dor (m Bext)
-




= = ra
x
Stromverteilung
:

auf lokalisierte
=
==



div (Mxe)
=
e
=




m
mi
=
für Konst R
Wechselwirkungspotentia
=




S
(Mr
- -
e
(F ~
-
rz Mz
-


To Magnetischer Dipole
- -
5 zweier
-


rz I rCR

2
MAGNETOSTATIK IN MATERIE
-



Mo(frei Trag)
mit
Zerlegung :
ELEKTROSTATIR IN MATERIE
divi
:
- rot B = +
div(Erin) Mikr Ermo O
mikroskopisch unversell rot




↳?
gilt
= =


- ,


Briuro Mojuiro div B
-


0 ↓ Mikro
=

Jfrei Jgebunden + =

Frei +
Tpol +
Trag R

Brikro drei-dir
übereichen
=
Mile roskopisch
gilt unversell div =
O rot =



Potentia
;
rotierend
=
:
15 -
F'l

=


überTeilchen Vek (r) = der (Tretro mit Magnetfeld =M Dielektrische F) EE) P = + =
coE(r)
itdiCr OfrG =
E (r)
=
unabhängig von Materie ~




Normalkomponente 5
Magnetisie = XmF
rotMg
von
Mit
:




Makroskopisch = EXE Co(E)Eitdir T
G TangentikomphF
=


E (5-51) 0 stetig
=
=

↑ . = ist




Magn Erregung # = -M = -
roti
-
-




& ohungelade
Mit Normalkomponente 5
Grenzfan. . Ford
.




von :

EmakroskopischesFeld) n 1




is
G.
spring
-//p 7 Opol
=
R (52-51) =
Ofrei springte
normal




DEMO
0




in >
-
Magnetisierungen
flächenstromdichte
=




normal
für Trei =
O


Ba=Be
auf Grenzfläche (OV)

Hama =
Humm
:
=
anfreinladungen
f
a ls
Die
-argential Komponente
(E-Ei) X =
0 ist
von

stetig
E :
targential E =
EzE) EzDn =
EnDa
=
-
a =
I go

Magnetisierung M n
:


Bo


&
Elektrostatische
=>


tangential
=> AerPeco
Ha He BuMz
BaMn
:
=
Jdr Seri(r) [(r)
= =




- Ex-Me Energie (ridium) W EJvdrD(r) E(r)
=
=
.




Vektorfelder (r) mit die Tr) =0 und
!
RANDWERTPROBLEME :




x =EC) Er)
rot (r) 0 verschwinden d h
. E(r)
Energiedichte
=
0
-




(Baußen (Berl +Ge Fett) Pelost)
=



Binnen) D ↑Mo mit Wer [
.
&
,

i) M const
inganzV
=
- .

-
= = = -





·



-




Polarisation --
ii) T F
-



= 0 in V MitRBaufOV = = -
*-Mag
=
3 Tolz
ZEITABHÄNGIGE FELDER ↓


magnetischfuß
iii) und Drag divF -
MojtCoMdNBAfri+ 3
0 0 V
rotE
in
= -




divE =
=

mit
=




o
=




-Jar'
rad
T
Mit
Frag
-
-




LÖSUNGEN
=



F
rotB
=
div B 0 rot =
frei
(mit Lenz-Regel) = =




=>
Mit M


-


·
+
-




s
mit
-




=>
inhomogene F,
--




oder Ei
L Wellengleichungen
-




&
mit Eichtransformationsfreiheit :




#
-T mitt = E-oNot =>
Irrit) =
coJd3r' ACrit-EIF-F'l)
divergiert für (11 122

8
Leitere
F'l


* (F
für Stromfäden
#
...
,


! E
-
:

mit X
grad
-



T
+



induc = (drj)Fr) EnSEdFTE) Ä (r) = Jut
=




Jeder SedEr Frez( = Sar
-
IF -F'l)
-




-F :

t)
=



100
Leistungsdichte i
IF F'l

= ditE(r
-


>
-



Leistung t) [iqi(EtrixB) Ei




Seme
Leistung Zeit tret (
I mit retarderder KAUSALITÄT !!!)
= .




-I Kind
=
=
Hell R i
=
(inv)
einer Stromquelle)
. =

z B . .




-2-

Energiestromdie St = Et)XI mit Energiedichte wem = [F E 5] = E +B
-
+ .




und Sderdivs
Energiestrom JordF .
5 =




L N]eA
MM
=
.

Kontinuitätsgleichung
div übervolumenvdasleliest
dw
eine
lange spule -JE - PONSCHE =G ditrat = EM
=
const =

The benefits of buying summaries with Stuvia:

Guaranteed quality through customer reviews

Guaranteed quality through customer reviews

Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.

Quick and easy check-out

Quick and easy check-out

You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.

Focus on what matters

Focus on what matters

Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!

Frequently asked questions

What do I get when I buy this document?

You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.

Satisfaction guarantee: how does it work?

Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.

Who am I buying these notes from?

Stuvia is a marketplace, so you are not buying this document from us, but from seller AdelinaB. Stuvia facilitates payment to the seller.

Will I be stuck with a subscription?

No, you only buy these notes for $7.07. You're not tied to anything after your purchase.

Can Stuvia be trusted?

4.6 stars on Google & Trustpilot (+1000 reviews)

51036 documents were sold in the last 30 days

Founded in 2010, the go-to place to buy study notes for 15 years now

Start selling
$7.07
  • (0)
Add to cart
Added