Een variantieanalyse is een multivariate analysetechniek die vaak wordt ingezet in de
wetenschap om beschrijvende vragen te kunnen beantwoorden. Het gaat hierbij dan om
vragen waarbij de beleidsmakers/ wetenschappers geïnteresseerd zijn in verschillen tussen
groepen. Het gaat om vergelijkend onderzoek. Variantieanalyse komt in beeld als het gaat om
meer dan twee groepen.
Variantieanalyse ook wel ANOVA
Wat is een variantie(analyse)?
- Uitbreiding t-toets voor twee onafhankelijke groepen
- Variantieanalyse is verschillenanalyse
- Variantie als maat voor spreiding rondom gemiddelden
- Variantie is de standaardafwijking in het kwadraat
- Notatie;
o Populatie; µ (gemiddelde), σ (standaardafwijking) en σ2 (variantie)
o Steekproef; x , S en S2
Berekenen van variantie steekproef;
n
1 2
∙ ∑ ( Y i−Y )
2
S=
n−1 i=1
( Y i−Y ) Het gaat hier over de individuele waarneming voor individu i min het gemiddelde van alle groepen.
N Steekproefgrootte; totaal aantal mensen in de steekproef
Waarom zou je een variantieanalyse willen uitvoeren?
- Doel; uitspraak doen over de vraag of de gemiddelden van een zekere variabele Y in meer dan 2
populaties aan elkaar gelijk zouden kunnen zijn
- Probleem; Populatiegemiddelden zijn onbekend. Je mist de gegevens van alle mensen uit de populatie,
waardoor je het met steekproeven moet doen.
- Oplossing; analyse van verschillen (=variantie) van Y in de steekproeven uit de afzonderlijke populaties
Wanneer kun en mag je variantieanalyse toepassen?
- Afhankelijk van onderzoeksvraag
- Meer dan 2 groepen met elkaar vergelijken
- Y is een kwantitatieve variabele (minimaal intervalniveau); kan worden weergegeven in een getal
- De factor is een kwalitatieve variabele (nominaal meetniveau); de variabele op basis waarvan we de
groepen indelen
- Variantieanalyse wordt relatief veel gebruikt binnen de medische wetenschap (experimentele setting;
RCT); causaliteit
Waarom geen t-toetsen uitvoeren en paarsgewijs gemiddelden vergelijken?
- De kans op het vinden van een statistisch significant verschil stijgt met het aantal onderlinge
vergelijkingen
- Stel je wilt 15 steekproeven onderling vergelijken, dan moet je 105 t-toetsen uitvoeren, elke keer met
5% kans om H0 ten onrechte te verwerpen
- Dat betekent naar verwachting 0,05 x 105 = 5 foute conclusies met variantieanalyse heb je dit risico
niet, waardoor variantieanalyse de voorkeur heeft.
,Drie voorwaarden voor het uitvoeren van een variantieanalyse
1. Populaties zijn normaal verdeeld
2. Steekproeven hebben gelijk aantal waarnemingen – groepgrootte allemaal gelijk
3. Populaties hebben gelijke variantie – toetsen
a. Vuistregel; Grootste standaardafwijking is niet meer dan 2 x de kleinste standaardafwijking
b. Beter; toets voor gelijkheid varianties
3b toets voor gelijkheid varianties;
H0 is dat alle varianties van de verschillende steekproeven aan elkaar gelijk zijn.
Bij een toets voor gelijke variantie is de correcte toetsingsgrootheid de toets van Hartley
Kritieke grens is dus 0,05
Stel er blijkt dat er geen gelijke varianties zijn, dan voldoe je niet aan de voorwaarde om een variantie test te
mogen uitvoeren.
- Je kunt aan de slag gaan met non-parametrische toetsten of data transformaties (niet relevant voor dit
blok)
, Variantieanalyse; Video b
ANOVA met 1 factor 1 variabele op basis waarvan je groepen kunt indelen
De F-waarde als ‘test-statistic’
- Statistische significante verschillen? ‘Test-statistic’ nodig
- F = variantie tussen groepen (between)/ variantie binnen groepen (within – de ratio)
- ANOVA tabel is een heel handig hulpmiddel om variantieanalyse gestructureerd aan te pakken en F te
bapelen
In de wolkjes staan synoniemen Let op variantie is hetzelfde als gemiddelde kwadraatsom
Vrijheidsgraden In de tabel staat a voor het aantal groepen en n staat voor het totaal aantal mensen in de
VOLLEDIGE steekproef
Kwadraatsom (KS) TUSSEN
- KS tussen zegt iets over de verschillen tussen de groepen. Zegt iets over het gemiddelde van een groep
ten opzichte van het over all gemiddelde.
-
- (Gemiddelde van de groep - gemiddelde van totaal)2 dat doen we voor elke groep en voor elk individu
in de groep.
- Dit kan je snel doen door voor elke groep het gemiddelde te delen door het over all gemiddelde, dit in
het kwadraat en dan keer het aantal deelnemers in die groep. Wanneer je dit voor elke groep apart
doet en dan bij elkaar optelt. Dan kom je op de kwadraatsom
Berekenen gemiddelde kwadraatsom TUSSEN
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller jyttelenssinck. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $9.18. You're not tied to anything after your purchase.