100% satisfaction guarantee Immediately available after payment Both online and in PDF No strings attached 4.2 TrustPilot
logo-home
Summary

Korte samenvatting toegpaste statistiek en dataverwerking

Rating
-
Sold
-
Pages
9
Uploaded on
11-01-2024
Written in
2022/2023

Een algemeen overzicht toegepaste statistiek en dataverwerking gegeven door Stefan van Dongen. De samenvatting bevat een korte beschrijving van elke statistische methode alsook de code (R) die hierbij gebruikt kan worden. Op het einde is er ook een lijst met mogelijke termen en hun bijhorende uitleg dat gevraagd kunnen worden op het examen.

Show more Read less
Institution
Course









Whoops! We can’t load your doc right now. Try again or contact support.

Written for

Institution
Study
Course

Document information

Uploaded on
January 11, 2024
Number of pages
9
Written in
2022/2023
Type
Summary

Subjects

Content preview

Toegepaste statistiek en
dataverwerking
1. herhaling/inleiding
beslissingsregels
Aanvaarden Verwerpen H0
H0
p≥α p<α
x≤c x >c

#vrijgheisgraden verdeling= #gegevens - #geschatte parameters

Shapiro.test  testen op normaliteit: indien p>alfa: de gegevens zijn normaal verdeeld
Wilcox.test  niet parametrische test op normaliteit
As.factor  wanneer er getallen staat die geen volgorde hebben maar een groep voorstellen
Rm(list=ls())  command window clearen

Continue variabele: een variabele zonder vaste waarde vb. tijd, lengte,…
Factor variabele: stelt een bepaalde categorie voor vb. 1=man, 2=vrouw

1.7 ANOVA
= 2/meer gemiddeldes met elkaar vergelijken (Analysis Of VAriance)

Statistisch model: y ij =µi+ ε ij
- i: de nummer van de groep
- j: de nummer van de waarneming in een groep
- µi: het geschatte gemiddelde van groep i
- ε ij: de residuele afwijking van de reële waarden t.o.v. het model

Andere vorm: y ij =µ0 +α i+ ε ij
- µ0: het gemiddelde van een referentiegroep
- α i: verschil in gemiddelde van groep i met de referentiegroep  indien H0 juist: i=0

Verschil in variantie
Totale variantie SST opsplitsen in 2 componenten
 SSA (deel verklaard door model): variantie/verschillen tussen de groepen
 SSE (residuele variantie): de variantie binnen een groep (tussen individuele waarnemingen)

i= groep  k= # groepen
j= waarneming  n=#waarnemingen




Als alle gemiddeldes gelijk zijn aan elkaar: MSA=MSE
 F test: F= MSA/MSE (met k-1 en n-k vrijgheidsgraden)

Commando’s uitvoeren:
1. lm1 <-lm(y~x)
2. anova(lm1)  Nulhypothese: alle gemiddeldes zijn gelijk aan elkaar
3. controle assumpties: diagnostische plots (ANOVA is vrij robuust dus kleine kans op afwijkingen)
a. residuele waarden normaal verdeeld

, b. gelijkheid van varianties
par(mfrow=c(2,2))
plot(lm1)
c. indien afwijking: Kruskal-Wallis test (niet-parametrisch)
kruskal.test(y~x)
4. indien nulhypothese verworpen: kijken waar verschillen zitten  2 aan 2 vergelijken met Tukey
methode
TukeyHSD(aov(y~x))

Extra uitleg diagnostische plots
Vb1: lineair verband
- grote grafiek: rechte= gefitte model, bolletjes=residuele
waarden
- residuals vs Fitted: scatterplot van de gefitte waarden t.o.v. de
resiuele waarden
o indien lineair verband: horizontale puntenwolk
(varianties constant)
- Normal probability plot: bestuderen van de normaliteit
o Indien mooie rechte: gegevens normaal verdeeld
- Residuals vs leverage: geeft de afwijking van metingen van de
rechte (standardized residuals) tov de mate waarin ze de
rechte scheef trekken (leverage) weer
o Cook’s distance: indien groter dan 1  invloedrijke
waarneming
Vb2: niet-lineair verband
- Rediuals vs Fitted: we zien dat bij lage waarden en bij hoge
waarden de residuelen sterk afwijken van het regressieverband
(hieruit kan je besluiten dat het geen regressieverband is)
- Normal Q-Q: de waarden zijn redelijk normaal verdeeld
- Residuals vs leverage: veel waarden hebben een grote invloed
op de regressierechte




Vb3: uitschieter zonder sterke invloed
- Rediuals vs Fitted: we zien dat de uitschieter afwijkt van het
horizontale verband, maar de lijn is nog altijd horizontaal  we
hebben nog wel een lineair verband
- Residuals vs leverage: de uitschietende waarde heeft een grote
standardized residuals (-4) maar een lage leverage (want ligt
eerder centraal in de rechte) dus heeft niet zo een sterke
invloed




Vb4: uitschieter met sterke invloed
- Rediuals vs Fitted: uitschieter trekt de horizontale lijn helemaal
scheef  door deze waarde een sterke afwijking van de
residuals tot het model
- Residuals vs leverage: de uitschieter heeft een hoge leverage en
hoge residuals  bijgevolg een hoge cooks distance (is dus een
invloedrijke uitschieter)

Get to know the seller

Seller avatar
Reputation scores are based on the amount of documents a seller has sold for a fee and the reviews they have received for those documents. There are three levels: Bronze, Silver and Gold. The better the reputation, the more your can rely on the quality of the sellers work.
inehoybergs Universiteit Antwerpen
Follow You need to be logged in order to follow users or courses
Sold
17
Member since
3 year
Number of followers
12
Documents
12
Last sold
1 month ago

4.7

3 reviews

5
2
4
1
3
0
2
0
1
0

Recently viewed by you

Why students choose Stuvia

Created by fellow students, verified by reviews

Quality you can trust: written by students who passed their tests and reviewed by others who've used these notes.

Didn't get what you expected? Choose another document

No worries! You can instantly pick a different document that better fits what you're looking for.

Pay as you like, start learning right away

No subscription, no commitments. Pay the way you're used to via credit card and download your PDF document instantly.

Student with book image

“Bought, downloaded, and aced it. It really can be that simple.”

Alisha Student

Frequently asked questions