Gepersonaliseerde geneeskunde in diagnose en therapie
Institution
Universiteit Hasselt (UHasselt)
Samenvatting van de meeste HC's van het vak Gepersonaliseerde geneeskunde zoals gegeven in het academiejaar 2017/2018. De gastcolleges en HC7 (innovatieve technologieën) zijn niet samengevat, omdat deze vrijwel geen theorie of tekst bevatten en beter te leren zijn adhv de slides.
Gepersonaliseerde geneeskunde in diagnose en therapie
All documents for this subject (1)
3
reviews
By: chloepalmers97 • 5 year ago
By: romyvanleeuwen1 • 4 year ago
By: cgeywitz • 4 year ago
Seller
Follow
biomedicalsciencestudent
Reviews received
Content preview
ZSO1 DIAGNOSTIEK EN PROGNOSE
Kankergenen
• Oncogenen: mutaties zijn dominant (one hit principe) → leiden tot een ‘gain of function’ van de
eiwitproducten (buitensporige toename van het aantal cellen).
• Tumor suppressor genen (TSG): mutaties zijn recessief (two hit principe) → leiden tot een ‘loss of function’
van de eiwitproducten (geen beperking van cel toename). Inactivatie door: nondisjunctie (chromosoom
verlies), nondisjunctie en duplicatie, mitotische recombinatie, genconversie, deleties, puntmutaties,
methylering,… Mutaties in RB en P53 zijn het meest prominent bij het ontstaan van kanker.
• Telomerase genen: telomeer sequentie aan het einde van DNA → lengte neem af met veroudering →
bescherming tegen verouderd/beschadigd DNA. Bij telomeer crisis heractiveert telomerase foutief en
verlengt de telomeren → geen bescherming tegen verouderd/beschadigd DNA.
• Stabiliteitsgenen: betrokken bij DNA herstel (checkpoints celcylus, telomeer crisis)
Susceptibiliteitsgenen: mutaties geven een verhoogde vatbaarheid op de ontwikkeling van kanker.
Ziekteveroorzakende genen: mutaties resulteren in de ontwikkeling van kanker.
Verloop
De diagnose kan pas gesteld worden als het volume van de tumor groot genoeg is. Vastelling van een gezwel gebeurt
oa klinisch (zichtbaar of voelbaar), symptomatisch (pijn, heesheid, bloeding, drukgevoel) en via beeldvorming.
Tumordetectiegrens = ± 1 cm Ø, 1 gram, 1 miljard cellen.
Symptomatologie
1. Lokale symptomen
2. Symptomen door metastasen
3. Functionele veranderingen in andere organen of systemen
(geen direct gevolg van primaire of secundaire tumoren).
Vertraging moet vermeden worden
• Patiënt delay: angst, onbekendheid
• Arts delay
o Niet-tijding onderkennen van een maligne aandoening
o Laattijdige doorverwijzing specialist
Diagnostiek
Eerste stap is anamnese en lichamelijk onderzoek, daarna klinische methoden:
1. Beeldvorming → identificeren van tumoraal weefsel.
2. (cyto)pathologische, morfologische en laboratoriumonderzoeken → labo voor oa tumormerkers en
verstoorde metabole processen.
3. Endoscopische of chirurgische exploratie → tissue is the issue.
,Stadiëring: TNM classificatie
1. Om een therapieschema op te stellen
2. Om de resultaten van een therapie eenduidig te evalueren
3. Om een idee te krijgen van de prognose
4. Eénvormigheid creëren voor medische informatie
TNM stadium Definitie Klinisch stadium
T Primaire tumor
Tx Aanwezigheid van primaire tumor kan niet bepaald worden
T0 Geen aanwijzing van primaire tumor
Tis Carcinome in situ (niet invasief) 0
T1, T2, T3, T4 Toenemende uitgebreidheid van lokale tumor I, II
N Regionale lymfeklier metastasen
Nx Aanwezigheid van regionale metastasen kan niet bepaald worden
N0 Geen regionale lymfekliermetastasen aanwezig
N1, N2, N3 Toenemende graad van regionale lymfekliermetastasen II, III
M Metastasen
Mx Aanwezigheid van metastasen kan niet bepaald worden
M0 Geen metastasen aanwezig
M1 Metastasen aanwezig IV
Methoden van stadiëring
1. Klinisch: anamnese, lichamelijk oz, eenvoudige beeldvorming
2. Radiologisch: uitgebreide beeldvormende technieken
3. Chirurgisch: operatie; chirugische exploratie
4. Pathologisch: histologische beoordeling en aanwezigheid van lymfkliermetastasen
Prognose en overleving
Vaak uitgedrukt in vijfjaars- of tienjaarsoverleving in %.
Term ‘genezing’ minder gebruikt, omdat men na
behandeling van een maligne tumor nooit zeker is of
er (1) residuele kankercellen zijn achtergebleven of (2)
micrometastasen aanwezig waren. De
tumordetectiegrens voor relaps metastasen is wel
lager door gerichtere en frequentere opsporing tijdens
de follow-up.
Biomedische beeldvorming
Technieken vnl gebruikt voor screening, therapie
monitoring en opvolging.
• Mammografie: borstweefsel. X stralen (2D) worden sterker teruggekaatst in tumorweefsel (celrijk → hoge
densiteit) dan in het omringende gezonde borstweefsel. Minder stralen doorgelaten thv tumorweefsel →
licht grijs beeld.
• CT-scan (computed tomography scan): hard weefsel. X stralen (3D), vaak in combinatie met moleculaire
beeldvorming (PET) van het glucosemetabolisme. Tumorweefsel wijkt af van het normale densiteit patroon.
o Longen: veel lucht dus lage densiteit → X stralen doorgelaten → zwart (radioluscent)
o Bot: hoge densiteit → X stralen tegen gehouden → wit (radiopaque)
Gevoeligheid kan worden verhoogd dmv contrastvloeistof. Grotere opname in tumor want sterk
doorbloed.
• MRI-scan (magnetic resonance imaging): hersenweefsel. Geen ioniserende straling, maar magnetische
straling → detectie van relatieve H distributie (spin van H-atomen verandert). Beelvorming zacht weefsel
beter dan van hard weefsel (weinig H2O). Ook in combinatie met PET.
, Moleculaire beeldvorming
Diagnose obv moleculaire signalen. Injectie van welbepaalde probe gelabeld met radioactief isotoop.
• SPECT (single-photon-emission-computerized tomography): probe gelabeld met singe photon emitter, zendt
γ-stralen uit in alle richtingen → polymator nodig: loden structuur die enkel γ-stralen doorlaat vanuit één
richting). Draaiende detector met polymator berekent richting en herkomst van stralen. Detectie adhv:
o Botmineralisatie: verhoogde mineralisatie van hydroxyapatiet in botmetastasen → verhoogde
concentratie difosfonaten. Difosfonaten radioactief labelen om botmetastase aan te tonen.
• PET (positron-emission tomography): probe gelabeld met positron emitter (e+), bij interactie met elektron
komen er twee γ-stralen vrij in tegengestelde richting (180°). Detector ring berekent richting en herkomst
van stralen. Detectie adhv:
o Glucose metabolisme: verhoogd metabolisme in tumorcellen. Injectie van gelabeld glucose →
opgenomen in weefsel → accumulatie → fosforylatie (niet bruikbaar). Patiënt moet nuchter zijn om
circulerend insuline en opname in spieren te vermijden. Nadeel: niet specifiek, want verhoogd
metabolisme ook bij meerdere aandoeningen mogelijk.
o Aminozuur metabolisme: hoge nood aan AZ bij hersentumoren. Injectie van gelabeld thyrosine.
o Eiwit expressie: receptor overexpressie bij veel tumorcellen, bijv. EGFR receptoren bij vnl
borstkanker (HER2).
• Niet circulerende merkers (biopt): bijv. EGFR, HER2, ER, PR. Nadeel → invasieve ingreep.
• Circulerende merkers: voordeel → geen invasieve ingreep en goedkoper.
o Afkomstig van tumorcel
▪ Nucleaire eiwitten: NMP22 bij blaaskanker; niet specifiek want verhoogde concentratie ook
bij blaasontsteking.
▪ Groeifactoren: AFP (foetaal albumine), herexpressie in bepaalde tumoren.
▪ Cytoplasmatische eiwitten: PSA (prostaat specifiek antigen) bij prostaatkanker; niet specifiek
want kan ook verhoogd bij ontsteking of hypertrofie van prostaat.
▪ Apicale membraaneiwitten (mucinen): komen los wanneer tumorcellen metastaseren →
algemene merker.
▪ CA15-3: meest performante tumormerker bij borstkanker. Verschillende polymorfismen dus
concentratie bepaling is patiëntspecifiek → opvolging van therapie efficiëntie.
o Uit micro-omgeving
▪ Botalkalisch fosfatase: komen los van het plasmamembraan van osteoblasten. Verhoogde
concentratie bij botkanker (verhoogde osteoblastenactiviteit).
DOELSTELLINGEN
• De student kan de moleculaire technologie gebruikt bij de diagnostiek benoemen, interpreteren en
samenvatten en hij kan deze later in het opleidingsonderdeel toepassen bij (gepersonaliseerde) therapie
ontwikkeling.
• De student kent het onderscheid tussen susceptibiliteitgenen en ziekteveroorzakende genen.
• De student kent de verschillende type genen betrokken bij het ontstaan van kanker.
• De student kent het verloop van de klinische kanker diagnose.
• De student kent de moleculaire mechanismes van de gebruikte beeldvormings- en laboratoriumtechnieken
en hoe die bijdragen tot een goede diagnose en/of prognose van kanker en bij het opvolgen van een
therapie bij kankerpatiënten.
The benefits of buying summaries with Stuvia:
Guaranteed quality through customer reviews
Stuvia customers have reviewed more than 700,000 summaries. This how you know that you are buying the best documents.
Quick and easy check-out
You can quickly pay through credit card or Stuvia-credit for the summaries. There is no membership needed.
Focus on what matters
Your fellow students write the study notes themselves, which is why the documents are always reliable and up-to-date. This ensures you quickly get to the core!
Frequently asked questions
What do I get when I buy this document?
You get a PDF, available immediately after your purchase. The purchased document is accessible anytime, anywhere and indefinitely through your profile.
Satisfaction guarantee: how does it work?
Our satisfaction guarantee ensures that you always find a study document that suits you well. You fill out a form, and our customer service team takes care of the rest.
Who am I buying these notes from?
Stuvia is a marketplace, so you are not buying this document from us, but from seller biomedicalsciencestudent. Stuvia facilitates payment to the seller.
Will I be stuck with a subscription?
No, you only buy these notes for $4.29. You're not tied to anything after your purchase.