Garantie de satisfaction à 100% Disponible immédiatement après paiement En ligne et en PDF Tu n'es attaché à rien
logo-home
ISYE 6501 Midterm 1 already graded A+ 2024/2025 $9.99
Ajouter au panier

Examen

ISYE 6501 Midterm 1 already graded A+ 2024/2025

 0 fois vendu
  • Cours
  • IQui
  • Établissement
  • IQui

ISYE 6501 Midterm 1 already graded A+ 2024/2025

Aperçu 2 sur 10  pages

  • 1 mars 2024
  • 10
  • 2023/2024
  • Examen
  • Questions et réponses
  • iqui
  • IQui
  • IQui
avatar-seller
Ashley96
ISYE 6501 Midterm 1

Rows - ANSData points are values in data tables

Columns - ANSThe 'answer' for each data point (response/outcome)

Structured Data - ANSQuantitative, Categorical, Binary, Unrelated, Time Series

Unstructured Data - ANSText

Support Vector Model - ANSSupervised machine learning algorithm used for both classification
and regression challenges.
Mostly used in classification problems by plotting each data item as a point in n-dimensional
space (n is the number of features you have) with the value of each feature being the value of a
particular coordinate.
Then you classify by finding a hyperplane that differentiates the 2 classes very well. Support
vectors are simply the coordinates of individual observation -- it best segregates the two classes
(hyperplane / line).

What do you want to find with a SVM model? - ANSFind values of a0, a1,...,up to am that
classifies the points correctly and has the maximum gap or margin between the parallel lines.

What should the sum of the green points in a SVM model be? - ANSThe sum of green points
should be greater than or equal to 1

What should the sum of the red points in a SVM model be? - ANSThe sum of red points should
be less than or equal to -1

What should the total sum of green and red points be? - ANSThe total sum of all green and red
points should be equal to or greater than 1 because yj is 1 for green and -1 for red.

First principal component - ANSPCA -- a linear combination of original predictor variables which
captures the maximum variance in the data set. It determines the direction of highest variability
in the data. Larger the variability captured in first component, larger the information captured by
component. No other component can have variability higher than first principal component.
it minimizes the sum of squared distance between a data point and the line.

Second principal component - ANSPCA -- also a linear combination of original predictors which
captures the remaining variance in the data set and is uncorrelated with Z¹. In other words, the
correlation between first and second component should is zero.

, What if it's not possible to separate green and red points in a SVM model? - ANSUtilize a soft
classifier -- In a soft classification context, we might add an extra multiplier for each type of error
with a larger penalty, the less we want to accept mis-classifying that type of point.

Soft Classifier - ANSAccount for errors in SVM classification. Trading off minimizing errors we
make and maximizing the margin.
To trade off between them, we pick a lambda value and minimize a combination of error and
margin. As lambda gets large, this term gets large.
The importance of a large margin outweighs avoiding mistakes and classifying known data
points.

Should you scale your data in a SVM model? - ANSYes, so the orders of magnitude are
approximately the same.
Data must be in bounded range.
Common scaling: data between 0 and 1
a. Scale factor by factor
b. Linearly

How should you find which coefficients to hold value in a SVM model? - ANSIf there is a
coefficient who's value is very close to 0, means the corresponding attribute is probably not
relevant for classification.

Does SVM work the same for multiple dimensions? - ANSYes

Does a SVM classifier need to be a straight line? - ANSNo, SVM can be generalized using
kernel methods that allow for nonlinear classifiers. Software has a kernel SVM function that you
can use to solve for both linear and nonlinear classifiers.

Can classification questions be answered as probabilities in SVM? - ANSYes.

K Nearest Neighbor Algorithm - ANSFind the class of the new point, Pick the k closest points to
the new one, the new points class is the most common amongst the k neighbors.

What should you do about varying level of importance across attributes with K Nearest
Neighbors? - ANSSome attributes might be more important than others to the classification ---
can deal with this by weighting each dimension's distance differently.
Unimportant attributes may be removed as they are not very important for the classification.

What is the difference between real and random effects in validation? - ANSReal effects: same
in all data sets
Random effects: different in all data sets

How should one generally split their data set? - ANSTraining (building models) / Validation
(picking model) / Test (estimate performance)

Les avantages d'acheter des résumés chez Stuvia:

Qualité garantie par les avis des clients

Qualité garantie par les avis des clients

Les clients de Stuvia ont évalués plus de 700 000 résumés. C'est comme ça que vous savez que vous achetez les meilleurs documents.

L’achat facile et rapide

L’achat facile et rapide

Vous pouvez payer rapidement avec iDeal, carte de crédit ou Stuvia-crédit pour les résumés. Il n'y a pas d'adhésion nécessaire.

Focus sur l’essentiel

Focus sur l’essentiel

Vos camarades écrivent eux-mêmes les notes d’étude, c’est pourquoi les documents sont toujours fiables et à jour. Cela garantit que vous arrivez rapidement au coeur du matériel.

Foire aux questions

Qu'est-ce que j'obtiens en achetant ce document ?

Vous obtenez un PDF, disponible immédiatement après votre achat. Le document acheté est accessible à tout moment, n'importe où et indéfiniment via votre profil.

Garantie de remboursement : comment ça marche ?

Notre garantie de satisfaction garantit que vous trouverez toujours un document d'étude qui vous convient. Vous remplissez un formulaire et notre équipe du service client s'occupe du reste.

Auprès de qui est-ce que j'achète ce résumé ?

Stuvia est une place de marché. Alors, vous n'achetez donc pas ce document chez nous, mais auprès du vendeur Ashley96. Stuvia facilite les paiements au vendeur.

Est-ce que j'aurai un abonnement?

Non, vous n'achetez ce résumé que pour $9.99. Vous n'êtes lié à rien après votre achat.

Peut-on faire confiance à Stuvia ?

4.6 étoiles sur Google & Trustpilot (+1000 avis)

64419 résumés ont été vendus ces 30 derniers jours

Fondée en 2010, la référence pour acheter des résumés depuis déjà 15 ans

Commencez à vendre!
$9.99
  • (0)
Ajouter au panier
Ajouté